

Collaborative Large-scale Integrating Project

Open Platform for EvolutioNary Certification Of
Safety-critical Systems

Prototype implementation of tools for
Argumentation/Compositional Certification

D5.5

Work Package: WP5: Compositional Certification

Dissemination level: CO

Status: Draft

Date: 12/08/2014

Responsible partner: Jan Mauersberger (IKV), Thomas Richardson (UoY)

Contact information: mauersberger@ikv.de, thomas.richardson@york.ac.uk

PROPRIETARY RIGHTS STATEMENT
This document contains information, which is proprietary to the OPENCOSS Consortium. Neither this document nor
the information contained herein shall be used, duplicated or communicated by any means to any third party, in
whole or in parts, except with prior written consent of the OPENCOSS consortium.

mailto:mauersberger@ikv.de

FP7 project # 289011
Consortium confidential
Page 2 of 29

FP7 project # 289011 16 December 2014 page 2 of 29

Contributors

Document History

Version Date Remarks

V0.1 2014-02-03 Initial version

V0.2 2014-02-20 First update of the document and the structure

V0.3 2014-02-27 Second update with contributions to chapter 2 and 4

V0.4 2014-02-28 Third update with contributions to chapter 3

V0.5 2014-12-08 Review

V0.6 2014-12-09 Incorporated review comments

V0.7 2014-12-11 Added chapter about EviCA

V1.0 2014-12-12 Ready for PB review

V1.1 2014-12-15 Reviewed first release

Names Organization

Jan Mauersberger, Sascha Baumgart IKV

Alejandra Ruiz and Mª Carmen Palacios TEC

Yaping Luo, Martijn Klabbers TUE

Sunil Nair SIM

Eric Verhulst ALT

Implementation of tools for Argumentation / Compositional Certification

D5.5

FP7 project # 289011 Page 4 of 29

TABLE OF CONTENTS

Abbreviations ... 7

1 Executive Summary ... 8

2 Implementation of OPENCOSS platform 2nd prototype tools .. 9
2.1 Scope and Implemented Functionality .. 9
2.2 Installation Guides & User Manuals ... 17
2.3 Source Code ... 18

3 Research and Investigation ... 22
3.1 Evidence Assessment ... 22
3.2 Vocabulary Support ... 23

3.2.1 SBVR ... 23
3.2.2 Implementation with SBVR support .. 24

3.3 Difference Analysis ... 25

4 Outlook ... 27

5 Appendix A ... 28

Implementation of tools for Argumentation / Compositional Certification

D5.5

FP7 project # 289011 Page 5 of 29

List of Figures

Figure 1 Functional decomposition of the OPENCOSS platform ... 9
Figure 2 Palette with supported Argumentation classes in the argumentation editor 11
Figure 3 Structure of the argumentation contract grammar .. 11
Figure 4 Example of a claim with mark-ups ... 12
Figure 5 Example of content assistant using a vocabulary in the ISO26262 context 13
Figure 6 Example of a pattern at creation phase .. 14
Figure 7 Templates view let the user select the library of patterns stored. ... 14
Figure 8 Configuration wizard page from the export wizard .. 17
Figure 9 Argumentation management plugins ... 20
Figure 11 Methodology of the approach ... 24
Figure 12 Tool support for using SBVR vocabulary for safety cases .. 25
Figure 13 Exemplary simplified difference between argumentation structures... 26

Implementation of tools for Argumentation / Compositional Certification

D5.5

FP7 project # 289011 Page 6 of 29

List of Tables

Table 1. Component level requirements for Reuse of existing argumentation .. 28
Table 2. Component level requirements for Specification of Assumptions .. 28
Table 3. Component level requirements for Validation .. 29
Table 4. Component level requirements for Gap Analysis .. 29

Implementation of tools for Argumentation / Compositional Certification

D5.5

FP7 project # 289011 Page 7 of 29

Abbreviations

API Application programming interface
CCL Common Certification Language
DSL Domain Specific Language
DX.Y OPENCOSS deliverable X.Y
EMF Eclipse Modelling Framework
GUI Graphical User Interface
GSN Goal Structure Notation
SBVR Business Vocabulary and Business Rules
TX.Y OPENCOSS task X.Y
XText Framework to build DSL with eclipse

Implementation of tools for Argumentation / Compositional Certification

D5.5

FP7 project # 289011 Page 8 of 29

1 Executive Summary

This document is a summary umbrella document of implementation and investigation work done in T5.3
άTool support for compositional certificationέ and the continuation of D5.4. It covers work that has been
done during development of prototype 1 and prototype 2 phases.

In particular the following core items constitute D5.5 achievements, referenced by this document:

¶ Installable OPENCOSS Platform tools 2nd prototype

¶ User Manuals and installation Instruction

¶ Source code description

In parallel to the implementation work, further research and investigation on potential implementation
techniques, frameworks and tooling strategies but also on theoretical groundwork have been performed by
partners participating in the T5.3 task. The results are briefly outlined in this document and they will be
used in the 3rd prototype phase if applicable.

Implementation of tools for Argumentation / Compositional Certification

D5.5

FP7 project # 289011 Page 9 of 29

2 Implementation of OPENCOSS platform 2nd prototype tools

The main goal of T5.3 in general is the provision of tools and OPENCOSS platform services to support
argumentation and assurance pattern management. Following the general OPENCOSS strategy of an
incremental approach for research and development, the first prototype phase did concentrate on the
general validation and implementation of the compositional certification conceptual framework and on the
quick provision of end user tools to support other activities in the project such as the analysis of the
industrial case studies and the analysis of further tool requirements and usage scenarios. The integration
into the OPENCOSS platform, the alignment with other parts of OPENCOSS and the stepwise extension
towards further framework concepts have been subject of the second prototype phase or will be part of the
third and last prototype phase.

To achieve these goals, the Eclipse RCP platform ς including supplementary Eclipse packages such as EMF,
GMF or Xtext ς were chosen as the technology foundation for the implementation work. It allowed rapid
prototyping but still supports extensibility in later phases due to high integration capabilities.

This deliverable is mainly concerned with the Argumentation Management. This part of the OPENCOSS
platform manages argumentation information in a modular fashion. It includes mechanisms to support
compositional safety assurance and assurance patterns management. The implemented functionality in the
first prototype is described in the next sub-section.

While the first prototype phase (see D5.4) was concentrating on the provision of the functional aspects of
the tool, the second prototype phase did concentrate on integration aspects with other parts of the
OPENCOSS tool platform, for example with the project repository.

2.1 Scope and Implemented Functionality

Figure 1 Functional decomposition of the OPENCOSS platform

Implementation of tools for Argumentation / Compositional Certification

D5.5

FP7 project # 289011 Page 10 of 29

The scope for the prototype is the provision of modelling tools for modular argumentation structures and
assurance patterns as well as for supplementary functions such as preliminary pattern instantiation, context
based user guidance, vocabulary support and contract definition. The major scope is highlighted with a red
circle on the Figure 1 showing the general functional overview of the OPENCOSS platform.
!ǎ ǎǘŀǘŜŘ ŀōƻǾŜΣ ǘƘŜ ά!ǊƎǳƳŜƴǘ aŀƴŀƎŜƳŜƴǘέ part is in charge of the argumentation along the assurance
project. The user will be able to benefit from reuse by using previous approved modules for argumentation
or instantiating argumentation patterns that reflect a set of best practices. He should be supported by
additional functions depending on the environment of the project and the prescriptive knowledge (i.e. the
safety standard or other standards the project has to deal with). This section details both the satisfied
requirements and the deployed components to show the implementation scope of the first prototype.

From the requirements point of view this phase focuses on a set of high level requirements as defined in
D5.2. Each requirement together with the implementation done so far and implementing the requirement
is shortly outlined in the following sections.

¶ Provide a consistent and constrained means for the expression of safety
argument claims

Safety argumentation is developed using the argumentation model which has been developed
within OPENCOSS. For the first prototype a graphical argumentation editor has been developed
which implements the CCL argumentation model using the GSN graphical notation. The tool palette
shown in Error! Reference source not found. (see Figure 2) indicates the different argumentation
classes supported in the first prototype.

Implementation of tools for Argumentation / Compositional Certification

D5.5

FP7 project # 289011 Page 11 of 29

Figure 2 Palette with supported Argumentation classes in the argumentation editor

Arguments structures and GSN diagrams are stored in individual model files in the Eclipse
workspace.

¶ Provide a consistent and constrained means for the expression of safety
argument contracts

To approach this requirement a DSL and contract editor has been created. This editor will support
users while creating a contract using a textual language. It implements the grammar for contracts
that is being defined on the context of T5.2. More information about the grammar is available in
deliverable D5.3.

Contracts are stored as independent files and are referenced in the argumentation when
composing two or more different modules of argumentation. Note that the idea of using a
dedicated DSL and a contract editor was reviewed and finally dropped in the last (current)
prototype phase. An alternative approach is presented in D5.6 ς this document will be updated
accordingly when tools have been developed.

Figure 3 Structure of the argumentation contract grammar

Implementation of tools for Argumentation / Compositional Certification

D5.5

FP7 project # 289011 Page 12 of 29

¶ Provide a consistent and constrained means for the expression of contextual
information used in safety arguments

While creating argumentation claims some pieces of information can be seen as properties. These
properties need to be constrained and are referenced in a consistent and coherent way. In order to
prevent users to include invalid expressions an initial support for using vocabularies in
argumentation has been developed. The information on the claims and in future also the context
will be validated against the vocabulary.

¶ Provide a consistent and constrained means for the expression of
assumptions used in safety arguments

Based on the initial support for simple vocabularies in the CCL and on means to support a more
structured argumentation, a set of additional supporting features have been implemented atop the
graphical argumentation editor. The language used to express claims has been enriched by
supporting dedicated markups. For example to express references to other elements in the
argumentation structure by means of id: markup or to express typed pattern variables by using var:
markups. References to external files or hyperlinks are supported as well. Markups can be used
while editing an argument text and they are rendered (similar to hypertext markups and in line with
the GSN standard) in case the argument element is shown on a GSN diagram. Using the provided
set of markups a first step towards semi-formal or even formal argumentation is supported.

Figure 4 Example of a claim with mark-ups

Beside the markups, the user is provided with a content assistant that ς depending on the context,
on the already entered text and on the vocabularies that are available in the current project ς
proposes a set of texts or markups that consistently fit the current context. For that purpose a
simple vocabulary editor is available to create and organize vocabulary terms according to the
current CCL version. Available vocabularies (vocabulary files in the project, potentially the SBVR) are
dynamically loaded and the terms are used by the content assist. Content assistance is also
available for all markups, e.g. for the id: markup the IDs of referable elements are provided.

Implementation of tools for Argumentation / Compositional Certification

D5.5

FP7 project # 289011 Page 13 of 29

Figure 5 Example of content assistant using a vocabulary in the ISO26262 context

¶ Develop a library of reusable pattern-based structural templates for modular
arguments

As at theory level, different patterns have been conceived, thus tool support to create, store

and instantiate these patterns was prepared. In the tools, an argument library is stored,

respectively saved, in a special directory that is defined in the preferences. Argument

patterns can be checked while developing argumentation using the patterns view which let

users select stored argument patterns and just by using the drag and drop function, patterns

are instantiated in the target argumentation.

Implementation of tools for Argumentation / Compositional Certification

D5.5

FP7 project # 289011 Page 14 of 29

Figure 6 Example of a pattern at creation phase

Figure 7 Templates view let the user select the library of patterns stored.

Implementation of tools for Argumentation / Compositional Certification

D5.5

FP7 project # 289011 Page 15 of 29

¶ Provide a means for managing change within a modularized argument

Argumentation management defines a class called module which lets user store argumentation in a
modular way. Argumentation ready for reuse can be instantiated as a module on the actual
argumentation and by doing so all the previous argumentation will be reused on the new project.

A library of ready to use modules is stored in a separate location within the too. The content of the
library (all contained pre-define modules) can be browsed and accessed using the άTemplatesέ view
on the Module Explored section similar to a άtatternέ ǾƛŜǿΦ However, these modules do not need
the phase of instantiating them because the included information is ready to be used and does not
need adaptation nor modification.

¶ Integration with CCL

One of the objectives of the tooling is to support safety argumentation from the early stages. In this
way, the Argumentation Editor has been enhanced with the automatic creation of the high level
safety argument from the concepts and terms currently modeled in the CCL. In order to achieve this
objective a model to model transformation is required since model transformations provide a
mechanism for automatically creating or updating target models based on information contained in
existing source models.

The first step in this topic has been to conduct a survey about Model Transformation languages.
Since the introduction of the MDE/MDA/MDD ideas for software systems development several
years ago, a number of different (Meta)-modelling and model transformation languages have been
proposed. Moreover, new model transformation languages will continue to appear, following
different paradigms and approaches. For instance, recently several approaches adopting the Model
Transformation By-Example (MTBE) paradigm have been proposed. So, in order to assess the
selection a set of ideal characteristics of model transformation languages has been established.
Therefore, taking into account such relevant characteristics and the model to model transformation
requirements of the OPENCOSS project, the Epsilon Transformation Language (ETL) has been
selected. ETL is a hybrid model-to-model transformation language with the following main features:
- It can handle several source and several target models.
- It offers rule scheduling functionality: lazy rules are only executed when they are explicitly

called, guarded rules are only executed if their guard evaluates to true, greedy rules are
executed whenever possible.

- Rules can be reused and extended through rule inheritance.
- External code can be executed from within the transformation rule.
- Epsilon languages provide excellent Eclipse-based tools that are supported by stable execution

engines.

The second step in this topic has been to implement the required model to model transformations.
In our case, Baseline models are transformed into Argumentation models as follows:
- RefActivities and its subactivities are transformed into a hierarchy of claims.
- RefRequirements and its subrequirements are transformed into a hierarchy of subclaims
ƳŀǊƪŜŘ ŀǎ άǳƴŘŜǊŘŜǾŜƭƻǇŜŘέ ŀƴŘ άǘƻ ōŜ ǎǳǇǇƻǊǘŜŘέΦ ¢ƘŜǎŜ ǎǳōŎƭŀƛƳǎ ŀǊŜ ŀƭǎƻ ǊŜƭŀǘŜŘ ǘƻ their
father claims (coming from RefActivities and its subactivities).

- RefArtefacts are transformed into Information Element Citations of Solution type.
- Relationships between all above instances are created.
b.Υ hƴƭȅ ƛƴǎǘŀƴŎŜǎ ƳŀǊƪŜŘ ŀǎ άƛǎ{ŜƭŜŎǘŜŘέ ŀǊŜ ŀǳǘƻƳŀǘƛŎŀƭƭȅ ǘǊŀƴǎŦƻǊƳŜŘΦ

Implementation of tools for Argumentation / Compositional Certification

D5.5

FP7 project # 289011 Page 16 of 29

In addition, a trace of these transformations is available. It provides a log of the execution of the
transformation. It maps elements of the source model that were matched by a transformation rule
to the elements of the target model that were produced by the transformation rule. In OPENCOSS
traces can be stored through two complementary mechanisms: in a separate trace model or in a log
file. These traces are useful as a basis for synchronization or incremental execution of model
transformations as well as a debugging aid for the transformation process itself.

¶ Integrate the argumentation tooling with the common infrastructure of the
OPENCOSS platform

During the second prototype phase it was envisaged to support a common central data
infrastructure for sharing data with other tools and platform services. The main task of the
development was the investigation in the available persistence techniques and frameworks
available for Eclipse and EMF based tools. In addition the possibilities to still support both, a central
database storage as well as a local file based storage was analyzed. Main goal was to support both
in parallel to let the OPENCOSS community choose the appropriate technique when developing
additional tools atop the OPENCOSS platform and frameworks. For argumentation tooling the
second approach was followed, i.e. the tools are still EMF/GMF and local file based but there is
support to export argumentation model to a central data storage and also to import models from
the central data storage.

On the server side, the technology of choice is a relational database as it is the most common way
to store data. The relational paradigm is well-supported by tools and frameworks and several
widespread open-source relational databases are freely available. We currently use a PostgreSQL
9.3 server, but this can be exchanged easily. The database schema is generated by Teneo from the
meta-model definition of the first prototype. This allows us to stick with the rapid prototyping
approach, where changes to the meta-model do not break the implementation. The last major task
on the server side is to create a RESTful API to give clients yet another way to access the common
storage. The EMFT Texo project is currently being evaluated as a framework to generate such API.

On the client side, the first prototype had to be integrated with the common storage. The standard
framework for object-relational mapping in Java programs is Hibernate. It requires an XML
configuration file that defines how Java objects are stored in the database. Teneo not only creates
such a mapping file from the EMF meta-models, it also generates the database schema.

The first approach was to use the import and export extension points of the Eclipse platform. The
model data, e.g. from safety cases or evidence models, is currently stored in separate files inside
projects in the Eclipse workspace. We provided export and import wizards to put model files into
the database and then used Hibernate and Teneo to handle the data transfer. This approach
worked well with the advantage being that it is a controlled push and pull mechanism for the
common storage. The main issues were that the references between model files could not resolved
and the integration with the editors was not very good.

References between models can occur when a GMF diagram is stored in a different file than the
data model or when a model element references another model element in a different file. Both
cases happen quite frequently. When a file containing such a reference is exported to the common
storage, those references cannot be resolved because the target model element is missing. This is
not acceptable, so we modified the exporter to export whole projects instead of single model files.
Now, before the project is exported, every model file is loaded into a project model that also
contains enough information about paths and file names to restore the project structure during the
import.

http://www.postgresql.org/
http://www.postgresql.org/
http://wiki.eclipse.org/Teneo
http://projects.eclipse.org/projects/modeling.emft.texo
http://hibernate.org/

Implementation of tools for Argumentation / Compositional Certification

D5.5

FP7 project # 289011 Page 17 of 29

Figure 8 Configuration wizard page from the export wizard

Parallel to the export and import functionality, we are working to integrate the editors of the first
prototype directly with the common storage. The important frameworks here (in addition to
Hibernate and Teneo) are CDO and Dawn. CDO handles, among other things, sessions and model
locking, while Dawn provides some integration with EEF and GMF editors. The main obstacle is that
the integration provided by Dawn is clearly not sufficient. Additional implementation is required to
achieve a seamless user experience. The common storage integration already adds to the overall
complexity of the prototype user interface, therefore the goal is to keep the editor as easy to use as
possible. As the task is non-trivial, there is an inherent risk involved in pursuing this goal due to
time constraints. The simple import and export approach serves not only as a fallback solution, it
also provided valuable insights into fundamental problems like the aforementioned unresolved
model references. It also allowed us to get model data into the common storage for the
implementation of the RESTful API.

2.2 Installation Guides & User Manuals

The steps necessary to install the second prototype are exhaustively described in D6.6 and will not be
repeated here. Deliverable D6.6 contains all required steps and document references to set up the server
and client tools. Note this document is a developer guide of the OPENCOSS tool prototype implementation.
The developers can find the source code, installation instructions, step by step, in order to set up the
development environment and the workspaces to use the OPENCOSS tools but also to implement new
functionalities for the OPENCOSS Prototype. There is currently no pre-packaged distribution.

http://www.eclipse.org/cdo/
http://wiki.eclipse.org/Dawn

Implementation of tools for Argumentation / Compositional Certification

D5.5

FP7 project # 289011 Page 18 of 29

¢ƘŜ ǳǎŜǊ Ƴŀƴǳŀƭ ŦƻǊ !ǊƎǳƳŜƴǘŀǘƛƻƴ aƻŘǳƭŜ ƛǎ ŘŜǘŀƛƭŜŘ ƛƴ ǘƘŜ ŘƻŎǳƳŜƴǘ άht9b/h{{ ŦƛǊǎǘ ǇǊƻǘƻǘȅǇŜ ǳǎŜǊ
manuŀƭέ ό5ŀǘŜ 25/02/2014 - V0.8; Section 7). This document is hosted, with the source code of the first
prototype, at https://svn.win.tue.nl/repos/opencoss-code/tags/prototype/0.8/prototype, under the doc
branch.

In summary, this document is a user manual of the first OPENCOSS tool prototype implementation. The
users can find the installing instructions, the tool environment description, and the functionalities starting
for the creation of Reference Frameworks (models representing Standards, Regulations, or Company-
specific Processes), Assurance Projects and the associated Baseline (subset of Reference Framework to be
applied in a specific assurance project), Evidence models (Artefacts), Process models (Activities),
Compliance Maps (so far, compliance maps from Reference Artefacts to Artefacts), and Argumentation
models.

Besides the first prototype for modular argumentation structures, there is a separate technical preview for
vocabulary support and additional supporting features as markups, syntax highlighting and content assist.
The user guide for this prototype can be found at https://svn.win.tue.nl/trac/opencoss/browser/WP-
transversal/Implementation/VocabularyPrototype/Margot-UserManual.docx.

2.3 Source Code

The source code of the first prototype can be found in the source code Subversion repository at
https://svn.win.tue.nl/repos/opencoss-code. There are tagged baseline versions for each prototype phase
ǳƴŘŜǊ άǘŀƎǎέ όŦƻǊ ŜȄŀƳǇƭŜ ǳƴŘŜǊ άtags/prototype/0.8έ). The trunk is reserved for the 3rd prototype phase
and future developments.

!ŦǘŜǊ ƛƴǎǘŀƭƭƛƴƎ ǘƘŜ ǇǊƻǘƻǘȅǇŜ ŀƴŘ ŦƻƭƭƻǿƛƴƎ ǘƘŜ ǎǘŜǇǎ ŘŜǎŎǊƛōŜŘ ƛƴ ǘƘŜ ŘƻŎǳƳŜƴǘ άht9b/h{{ ŘŜǾŜƭƻǇŜǊ
guideέ, all the source code can be found under the plugins branch.

Once all the plugins are installed, these are the necessary ones for the Argumentation Management:

¶ GSN.figures
This plugin provides utilities to draw model elements according to the Goal Structuring Notation (or
GSN) standard.

¶ org.opencoss.sam.agree
In this plugin, the agreement metamodel is defined and stored, and the Java implementation
classes for this model are generated.

¶ org.opencoss.sam.agree.sdk
This plugin includes the Java implementation of the agreement editor. It includes the framework
required to create, modify and validate the definition of the structure of an agreement.

¶ org.opencoss.sam.agree.ui
In this plugin the views and the user interfaces required for defining an agreement are found.

¶ org.opencoss.sam.arg
In this plugin, the argumentation metamodel is defined and stored, and the Java implementation
classes for this model are generated.

¶ org.opencoss.sam.arg.diagram
This plugin is the diagram editor itself. It manages diagrams and includes a canvas to draw on, a
palette with creation tools and default selecting and zooming capabilities, a property view and an
outline view.

¶ org.opencoss.sam.arg.edit
The edit plugin includes adapters that provide a structured view and perform command-based
edition of the model objects.

https://svn.win.tue.nl/repos/opencoss-code/tags/prototype/0.8/prototype
https://svn.win.tue.nl/trac/opencoss/browser/WP-transversal/Implementation/VocabularyPrototype/Margot-UserManual.docx
https://svn.win.tue.nl/trac/opencoss/browser/WP-transversal/Implementation/VocabularyPrototype/Margot-UserManual.docx
https://svn.win.tue.nl/repos/opencoss-code

Implementation of tools for Argumentation / Compositional Certification

D5.5

FP7 project # 289011 Page 19 of 29

¶ org.opencoss.sam.arg.editor
This plugin provides the user interface to view instances of the model using several common
viewers and to add, remove, cut, copy and paste model objects, or to modify the objects in a
standard property sheet.

¶ org.opencoss.sam.arg.ui
This is an additional plugin. It offers several utilities such as drawing model elements not included in
the GSN standard, accessing to patterns and modules files.

¶ org.opencoss.sam.arg.preferences
This plugin manages the default preferences required by the Argumentation diagram editor. The
parameters which can be defined are the Modules Directory (with all argumentation modules
stored from previous argumentation phases) and the Patterns Directory (that contains all
argumentation patterns templates).

In addition, theses plugins are necessary to manage assurance project and to handle the corresponding
evidences:

¶ org.opencoss.apm.assuranceassets
In this plugin, the assurance assets metamodel is defined and stored, and the Java implementation
classes for this model are generated.

¶ org.opencoss.apm.assuranceassets.edit
The edit plugin includes adapters that provide a structured view and perform command-based
edition of the assurance assets model objects.

¶ org.opencoss.evm.evidspes
In this plugin, the evidence metamodel is defined and stored, and the Java implementation classes
for this model are generated.

¶ org.opencoss.evm.evidspec.edit
The edit plugin includes adapters that provide a structured view and perform command-based
edition of the model objects.

¶ org.opencoss.infra.properties
This plugins contains the definition of the Property metamodel, and the Java implementation
classes for this model.

¶ org.opencoss.infra.properties.edit
In relation with the edit plugin for evidence, this plugin contains a provider to display the model in a
user interface.

Figure 7 shows all the plugins described above.

Implementation of tools for Argumentation / Compositional Certification

D5.5

FP7 project # 289011 Page 20 of 29

Figure 9 Argumentation management plugins

Implementation of tools for Argumentation / Compositional Certification

D5.5

FP7 project # 289011 Page 21 of 29

The following plugins contain optional code implementing vocabulary, markup and content assist support.
These plugins are currently not based on the above argumentation editor but will be integrated in the 2nd
phase:

¶ de.ikv.opencoss.vocabulary.[diagram|edit|editor|tests]
Contain the CCL vocabulary meta model respective the related EMF based tree editor and GMF
based graphical editor to create and edit vocabulary models

¶ de.ikv.opencoss.contentassist
Contain base support for content assist and syntax highlighting based on markups and on CCL
vocabularies.

¶ de.ikv.opencoss.gsn.[diagram|edit|editor|tests]
Contain a simple GSN editor as a proof of concept for the above add-on features.

Further packages for import and export of argumentation models to the shared database can be found
ǳƴŘŜǊ ŀ ǎŜǇŀǊŀǘŜ ōǊŀƴŎƘ άōǊŀƴŎƘŜǎκ5!hψ9ȄǇƻǊǘψLƳǇƻǊǘέΦ ¢ƘŜǎŜ ǇŀŎƪŀƎŜǎ ǿƛƭƭ ōŜ ƳŜǊƎŜŘ ōŀŎƪ ǘƻ ǘƘŜ ǘǊǳƴƪ
development in a next step.

Implementation of tools for Argumentation / Compositional Certification

D5.5

FP7 project # 289011 Page 22 of 29

3 Research and Investigation

This chapter gives a brief outlook of what will be tackled in the 3rd development phase.

3.1 Evidence Assessment

A prototype tool named EviCA (Evidence Confidence Assessor) was developed to support the evidence
assessment framework. Specifically, EviCA allows users to: (1) create and edit safety arguments using GSN,
(2) question the various reasons for having confidence in the used in primary argument, (3) automatically
build confidence arguments based on a predefined GSN pattern that is customisable, and (4) calculate the
confidence and the uncertainty at each level of the argument automatically.

EviCA is written in the Java programming language as a plug-in to the Eclipse IDE. It uses some utilities of
the underlying Eclipse framework, notably the Graphical Editing Framework (GEF). We use Microsoft Excel

as one of the means to import checklists for reasoning lowest-level factors. We also use Graphviz, an open
source graph visualization software to visualize the individual belief functions the user provides and build a
model of the confidence argument summarizing the belief functions. The figure below shows the
technology stack used for EviCA.

EviCA*

Eclipse Framework (Plugin Development)

Graphical Editing Framework (GEF)

GSN Editor*

GraphVizMicrosoft Excel

ER Tool*

T
e

c
h
n

o
lo

g
y
 S

ta
c
k

--------->

* Implemented in EviCA

Figure 9. Technology stack of EviCA tool

Figure 10 shows a screenshot of a sample safety argument fragment described in GSN. The pallet to the

right of the screen provides users with the various GSN elements (Goals, solutions, strategies, context, etc.)
that they need to create a goal structured safety case. The properties of a selected item can be accessed at
the bottom of the screen. The node description can be either edited in the properties window or can be
edited directly in the canvas. All edits in the elements are reflected in real-time. The nodes can be selected,
resized, moved or deleted as required. The pane in the left of the window is a project explorer that displays
the different projects and their associated safety case diagrams. The GSN editor developed as part of EviCA
is the first of its type that allows users to create and manipulate confidence arguments. Users can click and
drag Assertion Claim Points (ACP), between goals and solutions. An ACP is indicated by a black rectangle on
the relevant link. Fig. 10 shows ACPs named ACP36 and ACP 37.

Implementation of tools for Argumentation / Compositional Certification

D5.5

FP7 project # 289011 Page 23 of 29

CƛƎǳǊŜ млΦ {ŎǊŜŜƴǎƘƻǘ ƻŦ 9Ǿƛ/!Ωǎ D{b ŜŘitor with sample GSN safety case fragment

¢ƘŜ ǳǎŀƎŜ ƻŦ ǘƘŜ ǘƻƻƭ ƛƴŎƭǳŘƛƴƎ ŦŜŀǘǳǊŜǎ ŀǎ ά/ƻƴŦƛŘŜƴŎŜ !ǊƎǳƳŜƴǘ DŜƴŜǊŀǘƛƻƴέΣ ά.ŜƭƛŜŦ CǳƴŎǘƛƻƴ /ƻƭƭŜŎǘƛƻƴέ
ŀƴŘ ά9ǾƛŘŜƴŎŜ !ǎǎŜǎǎƳŜƴǘ ±ƛǎǳŀƭƛȊŀǘƛƻƴέ ŀǊŜ ŘŜǎŎǊƛōŜŘ ƛƴ ǘƘŜ 9viCA user guide which is available together
with source code on the project repository.

3.2 Vocabulary Support

The support for vocabularies is planned to be extended in the next prototype phase and to go beyond the
definition and usage of simple terms as they are currently modeled in the CCL and used in the tools.
Different techniques and standards such as SBVR and existing tools to support the definition as well as to
ǎǳǇǇƻǊǘ ǘƘŜ ǳǎŀƎŜ ƻŦ άŜƭŜŎǘǊƻƴƛŎέ ǾŜǊǎƛƻƴǎ ƻŦ ǾƻŎŀōǳƭŀǊƛŜǎ ƛƴ ht9b/h{{ ǘƻƻƭǎ will be further researched
and analyzed. Based on rich vocabularies the semantic analysis and validation of claims is supposed to be
much more capable. The investigation in existing supporting tools and related projects has been already
started in the current phase but no significant results in terms of direct vocabulary tooling that can be
incorporated into the platform or that have been developed are available at this stage.

3.2.1 SBVR

Semantics of Business Vocabulary and Business Rules (SBVR) is a standard business-focused specification
proposed by the Object Management Group (OMG) in 2008. Recently, OMG published its second version
(SBVR 1.1). It defines a metamodel for domain experts to develop semantic models of business vocabulary
and business rules, which are two key elements of SBVR meanings. The definitions of some main concepts
in SBVR specification are listed as follows:

¶ Meaning: what is meant by a word, sign, statement, or description; what someone intends to
express or what someone understands.

¶ Vocabulary: set of designations and verb concept wordings primarily drawn from a single language
to express concepts within a body of shared meanings.

¶ Concept: unit of knowledge created by a unique combination of characteristics.

¶ Rule: proposition that is a claim of obligation or of necessity.

Implementation of tools for Argumentation / Compositional Certification

D5.5

FP7 project # 289011 Page 24 of 29

¶ Business rule: rule that is under business jurisdiction.

In this document, all SBVR examples are given in SBVR Structured English (SSE), which is introduced in SBVR
Annex C. There are four font styles with formal meaning in SSE: green and underlined font style is used to
describe noun concepts, green and double underlined font style is used for individual concepts, blue and
italic font style is used to describe verb concepts, then other linguistic symbols used for definitions and
statements are represented in orange font style. In our implementation, for the font style of Name, we use
the same font style as for Term.

Business rules provide elements of guidance on business structure and actions. SBVR defines deontic and
alethic modalities for the formulations of guidance. The deontic modal operators describe behavioral or
operative rules, which specify expectations of humans or automated systems. Alethic modal operators
enable definitional structural rules, which define features of a model, thus cannot be violated.

3.2.2 Implementation with SBVR support

In OPENCOSS different approaches for extracting the SBVR vocabulary from standards (and other relevant
processes and documents) are being investigated. These include:

1. Manual extraction of verbs, nouns and relations from the documentation. This has the advantage
that inconsistencies in terminology can be examined in turn, and pragmatic decisions made for
trade offs where necessary. It has the disadvantage that it is very time consuming.

2. Another approach is based on the assumption that existing models of certain business domains (or
standards as in OPENCOSS) contain the relevant information already, and are rich enough and on a
level that allows the extraction of the SBVR vocabulary from them. This has the advantage of being
automated (and it should be noted that the models are required for other aspects of the OPENCOSS
approach so must be created whichever SBVR approach is taken), however much work is needed to
ensure the standards models capture all the subtleties and relationships that may be needed.

3. An alternative approach may be to marry these two together, with partial automation highlighting
areas where manual intervention is required.

The method by which the SBVR is extracted is not the primary concern of this task, but we include this
information for completeness and consistency with ongoing research in Task 5.2.

Figure 11 Methodology of the approach

