

Collaborative Large-scale Integrating Project

Open Platform for EvolutioNary Certification Of
Safety-critical Systems

High-Level Requirements on the OPENCOSS
Platform

D2.2

Work Package: WP2: Requirements and Architecture Design

Dissemination level: PU

Status: Final

Date: 21 August 2012

Responsible partner: Martijn Klabbers (TU/e)

Contact information: M.D.Klabbers@tue.nl

PROPRIETARY RIGHTS STATEMENT
This document contains information, which is proprietary to the OPENCOSS Consortium. Neither this
document nor the information contained herein shall be used, duplicated or communicated by any means
to any third party, in whole or in parts, except with prior written consent of the OPENCOSS consortium.

Contributors

Document History

Version Date Remarks

v0.0 8-12-2011 Table of contents

v0.1 21-3-2012 First draft version

v1.0 13-4-2012 First set of high-level requirements

V1.1 23-4-2012 Review of high-level requirements (Brussels)

V2.0 4-7-2012 First full version

v2.1 13-7-2012 Ready for internal review

v2.2 24-7-2012 Ready for PB review

V2.3 31-7-2012 Approved by PB

Names Organisation

Huascar Espinoza, Fran Ruis, Alejandra Ruiz, Xabier Larrucea TECNALIA Research & Innovation

Vincenzo Manni, Giorgio Tagliaferri RINA Services SpA

Jérôme Lambourg AdaCore

Martijn Klabbers, Joost Gabriels, Luna Yaping Luo Eindhoven University of Technology

Wojciech Jaszcz, Janusz Studzizba Parasoft SA

Paolo Panaroni, Silvia Mazzini, Alessandra Martelli Intecs

Mehrdad Sabetzadeh, Jose Luis de la Vara (Simula Research Laboratory)

Olaf Kath, Marc Born, Jan Mauersberger ikv++ technologies ag

Daniela Cancila, Sébastien Rocher ATEGO France

Erik Borgers, Karel van de Meent, Daniel Mast, Bart Jacobs,
Norbert Plan, Mireille Larnac

Inspearit (before DNV ITGS)

Katrina Attwood University of York

Fulvio Tagliabò, Alberto Melzi Centro Ricerche Fiat S.C.p.A.

Cedric Chevrel, Marc Fumey THALES Avionics

High-Level Requirements D2.2

FP7 project # 289011 Page 3 of 134

Table of Contents

Table of Contents ... 3

List of Figures ... 5

List of Tables .. 6

Abbreviations and Definitions .. 7

Executive Summary.. 8

1 Introduction ... 9
1.1 Relation with other tasks and work packages ... 10

1.1.1 OPENCOSS Platform Architecture (Task 2.3) ..10
1.1.2 Common Certification Language (CCL) (WP4) ..10
1.1.3 Compositional Certification (WP5) ...10
1.1.4 Evolutionary Evidence Chain (WP6) ..10
1.1.5 Transparent Certification- and Compliance-Aware Process (WP7)11
1.1.6 General remarks ..11

1.2 What are high-level requirements? ... 11

2 Process for Creating High-Level Requirements .. 15
2.1 Steps and iterations ... 15
2.2 Context: Business scenarios ... 15

2.2.1 General safety assessment process ..16
2.3 Requirements Elicitation .. 17

2.3.1 Wireframing ..17
2.4 Requirements Analysis ... 18
2.5 Requirements Specification: First set of HLRs ... 18
2.6 Validation through Traceability .. 18
2.7 Future iterations ... 18

3 Scope and domain model ... 19
3.1 Vision and Scope: explaining the Approach ... 19
3.2 The Approach for the OPENCOSS Platform ... 19
3.3 Conceptual Domain Model .. 22

4 High-Level Requirements ... 25
4.1 Introduction.. 25
4.2 Attributes of requirements .. 25
4.3 Stakeholders and Actors derived from users ... 27
4.4 Use case diagrams .. 28
4.5 High-level requirements ... 36

4.5.1 General high-level requirements ..39
4.5.2 Manufacturer Main High-Level Requirements ...42
4.5.3 Assessors Main High-Level Requirements ..44
4.5.4 General User High-Level Requirements ..47
4.5.5 {ŀŦŜǘȅ /ŀǎŜ 9ƴƎƛƴŜŜǊΩ IƛƎƘ-Level Requirements ..53
4.5.6 !ǊƎǳƳŜƴǘ 5ŜǾŜƭƻǇŜǊΩǎ IƛƎƘ-Level Requirements ..55
4.5.7 Safety EƴƎƛƴŜŜǊΩǎ IƛƎƘ-Level Requirements ...60
4.5.8 Safety Project Manager High-Level Requirements ...60
4.5.9 Safety Assessor High-Level Requirements ..61
4.5.10 5ŜǾŜƭƻǇŜǊΩǎ ŀƴŘ ¢ŜǎǘŜǊǎΩ IƛƎƘ-Level Requirements ...61

High-Level Requirements D2.2

FP7 project # 289011 Page 4 of 134

5 Conclusions .. 63

6 References ... 64

7 Appendix: Glossary of the OPENCOSS Platform High-Level Requirements 66

8 Appendix: Stakeholder needs ... 79

9 Appendix: Introduction to Use Case Diagrams .. 89
9.1 Introduction.. 89
9.2 Why are use cases useful? ... 89
9.3 Definition .. 90

9.3.1 Diagrams..91
9.4 Steps to create use case diagrams ... 93

9.4.1 Introduction ..93
9.4.2 Steps ..94

9.5 Appendix conclusion .. 94

10 Appendix: High-Level Requirement Good Practices ... 95

11 Appendix: Cross-application domain use cases: RTOS OPENCOM .. 98
11.1 Purpose of Document .. 98
11.2 Background: The OpenCom RTOS .. 98
11.3 Use Case Documentation ... 98

11.3.1 Context ..98
11.3.2 General Use Cases ...99
11.3.3 Use Cases arising from situations in which the OpenCom RTOS is deployed in a

single system .. 103
11.3.4 Additional Use Cases arising from situations in which the OpenComRTOS is reused

in a similar system in the same domain ... 123
11.3.5 Additional Use Cases arising from situations in which the OpenComRTOS is reused

in a system in another domain .. 125
11.3.6 Requirements Issues Arising from the Use Cases Above 127

12 Appendix: Validation scenario (High-level scenario) .. 128
12.1 Introduction.. 128
12.2 Users ... 128
12.3 Context: system assessment in 2021 ... 128

12.3.1 Automotive: e-carPark ... 129
12.3.2 Railway: e-shunt ... 129
12.3.3 Avionics: e-taxi ... 130

12.4 Setting up the assessment ... 130
12.5 System re-use with the same standard ... 132
12.6 Component re-use with the same standard .. 133
12.7 Re-use with a different standard, within the application domain 133
12.8 Re-use cross application domain ... 134

High-Level Requirements D2.2

FP7 project # 289011 Page 5 of 134

List of Figures

Figure 1: Requirements engineering steps reconstructed from [4] ... 15
Figure 2: Cross domain safety assessment business process ... 16
CƛƎǳǊŜ оΥ 9ȄŀƳǇƭŜ ǳǎŜ ŎŀǎŜ ΨaŀƴŀƎŜ !ǊǘŜŦŀŎǘǎΩ ǘƻ ŘŜƳƻƴǎǘǊŀǘŜ ǘƘŜ ǊŜƭŀǘƛƻƴǎƘƛǇ ōŜǘǿŜŜƴ ǘƘŜ ht9b/h{{

Platform, existing tools, and the OPENCOSS Core. .. 20
Figure 4: Aggregated OPENCOSS domain model .. 22
Figure 5: Detailed domain model of OPENCOSS ... 24
Figure 6: Stakeholders and actors involved in the OPENCOSS platform .. 27
CƛƎǳǊŜ тΥ aŀƴǳŦŀŎǘǳǊŜǊǎΩ ǳǎŜ ŎŀǎŜ ŘƛŀƎǊŀƳΣ ƴǳƳōŜǊǎ ǊŜŦŜǊ ǘƻ ƘƛƎƘ-level requirement IDs 28
Figure 8: Assessor use case diagram ... 29
Figure 9: Use case diagram of the general user .. 30
Figure 10: Safety Case Engineer use case diagram ... 31
Figure 11: Argument Developer detailed use case diagram ... 32
Figure 12: Safety Engineer detailed use case diagram ... 33
Figure 13: Safety (Project) Manager detailed use case diagram .. 34
Figure 14: Safety Assessor detailed use case diagram .. 35
Figure 15: Developer/Tester use case diagram .. 36
Figure 16: Partial use-case diagram for the Chemical Tracking System ... 92
Figure 17: Use case diagram of a ticket vending machine .. 93
Figure 18: General use case diagram .. 103
Figure 19: Workflow Use Cases Diagram .. 106
Figure 20: Requirements Use Cases Diagram ... 111
Figure 21:Argument Use Cases Diagram ... 116
Figure 22:Evidence Use Cases Diagram .. 119
Figure 23:Traceability, Change Management and Documentation Use Cases Diagram 123
Figure 24: Overview of the user's hierarchy ... 128
CƛƎǳǊŜ нрΥ {ŜǘǘƛƴƎ ǳǇ ǘƘŜ ǎǘŀƴŘŀǊŘǎΩ ǎŀŦŜǘȅ ǊŜǉǳƛǊŜƳŜƴǘǎ ... 130
Figure 26:Document Management Use Case titles (Manufacturer).. 131
Figure 27: Safety Engineer use case diagram .. 131
Figure 28: Developing an Initial Safety Argument .. 132
Figure 29: Assessment and negotiation use cases .. 133

High-Level Requirements D2.2

FP7 project # 289011 Page 6 of 134

List of Tables

Table 1: Attributes of the high-level requirements .. 25
Table 2: ID number and name of the high-level requirements for the OPENCOSS platform 36
Table 3: Concepts used in the high-level requirements for the OPENCOSS platform 66
Table 4: Stakeholder need .. 79

High-Level Requirements D2.2

FP7 project # 289011 Page 7 of 134

Abbreviations and Definitions

ALARP As Low as Reasonably Practicable

Application
domain

Domains in which safety critical systems are developed that need certification,
like the Automotive, Railway, Avionics, Maritime, Health, Nuclear Power
Plants,etc.

ARM Argumentation Metamodel

CAE Claims-Argument-Evidence

CCL Common Certification Language

COTS Commercial-Off-The-Shelf

DoW Description of Work

Domain
The safety assessment domain as a common denominator for safety assessment
expertise and practices.

HLR High-Level Requirement

IMA Integrated Modular Avionics

ISA Independent Safety Assessor

OPENCOSS Open Platform for EvolutioNary Certification Of Safety-critical Systems

RAM Requirements Abstraction Model

RTOS Real-Time Operating System

SEooC Safety Element out of Context

SIL System Integrity Level

UML Unified Modelling Language

WP Work Package

High-Level Requirements D2.2

FP7 project # 289011 Page 8 of 134

Executive Summary

OPENCOSS aims at the definition and implementation of an intelligent, automated, and highly
customizable safety certification management infrasǘǊǳŎǘǳǊŜ ƛƴǘŜƎǊŀǘŜŘ ƛƴǘƻ ƳŀƴǳŦŀŎǘǳǊŜǊǎΩ ŜȄƛǎǘƛƴƎ
development and safety assurance processes and tooling. The technological platform will build upon a
comprehensive conceptual certification framework for safety case creation, monitoring, assessment,
maintenance, and evolution.

The goal of this deliverable is to give an overview of the OPENCOSS conceptual domain and to formalize
the high-level functional and non-functional requirements and constraints based on the work done in WP1.

The deliverable provides:

¶ the process used for capturing high-level requirements and lists best practices;

¶ an overview of the OPENCOSS conceptual domain, showing how concepts are related to each
other;

¶ use cases diagrams showing the interaction between stakeholders and OPENCOSS platform;

¶ high-level requirements elicitated by the OPENCOSS consortium;

¶ high-level validation scenario.

The conceptual domain model, shows on both an aggregated and detailed level, the most important
concepts used in the OPENCOSS project. Furthermore it shows how and with what cardinality these
concepts are related to each other. The conceptual domain model serves as an important cornerstone for
understanding the problem at hand and designing a solution.

The use case diagrams show how actors (users, stakeholders) interact with the OPENCOSS platform. It
details the actions available to the different actors and furthermore shows which actions depend on which
other actions.

From the high-level requirements gathered, the essential requirement attributes such as type, priority, and
actors are listed in a sequence of tables. The set of requirements presented in this document should be
considered an initial set. Because of the research nature of the OPENCOSS project, the requirements are
bound to change with insight gained. This document will however serve as a basis for all other work
packages, but should be incrementally updated and improved.

The appendices give some more background information, such as best practices and guidelines for high-
level requirements, an example use case for cross-application: RTOS OPENCOM and validation scenario
used to validate the use cases against the high-level requirements.

As stated, this document contains the current understanding of the problem at hand and solution needed
in the OPENCOSS project. This initial set should be usable as guidelines for other work packages but at the
same time, the contents, i.e. the conceptual domain model, use cases, and high-level requirements should
be re-evaluated on a consistent basis to see if we are on track and be iteratively updates and improved.

High-Level Requirements D2.2

FP7 project # 289011 Page 9 of 134

1 Introduction

In a broad context, safety assurance and certification are among the most expensive and time-consuming
tasks in the development of safety-critical embedded systems. European innovation and productivity in
this market is currently somewhat curtailed by the lack of affordable (re)certification approaches. Major
problems arise when evolutions to a system entail reconstruction of the entire body of certification
arguments and evidence. Further, market trends strongly suggest that many future (embedded) systems
will comprise heterogeneous, dynamic coalitions of systems of systems. As such, they will have to be built
and assessed according to numerous, potentially competing, standards and regulations. Current
certification practices will then be prohibitively costly to apply to this kind of embedded systems.

At project level, OPENCOSS aims to devise a common certification framework which spans different
vertical markets in, first of all, the transport sector and which facilitates the reuse of assurance assets
across and between domains, and also to establish an infrastructure casu quo an open-source platform for
safety certification. The platform is being realised as a tightly integrated solution, supporting
interoperability with existing development and assurance tools. The ultimate goal of the project is to bring
about substantial reductions in recurring costs of safety (re-)certification, and at the same time to increase
product safety through the introduction of more systematic certification practices. Both will boost
innovation and system upgrades considerably.

In other words, OPENCOSS aims at the definition and implementation of an intelligent, automated, and
highly customizable safety certification management infrastructure integrated into existing development
and safety assurance processes and tooling. The technological platform will build upon a comprehensive
conceptual certification framework for safety-case creation, monitoring, assessment, maintenance, and
evolution.

This document is the second deliverable of work package 2 (WP2). The objectives of WP2 are to:

1. Systematically analyse and formulate the meaningful business models of such a platform and
capture the needs of different types of OPENCOSS stakeholders including tool vendors, embedded
systems developers, integrators, system and system of systems providers, certification entities,
governmental agencies, regulation bodies, and standardization bodies.

2. Formalize the high-level functional and non-functional requirements including legal constraints,
security, reliability and others, by using the inputs from use cases (WP1).

3. Design the global OPENCOSS platform architecture, while considering already existing technologies
and conceptual frameworks.

4. Provide a usage scenario specification of the OPENCOSS architecture with emphasis on platform
services, building blocks and interaction scenarios.

OPENCOSS deliverable D2.2 aims to tackle the second objective and describe the high-level functionality of
the OPENCOSS platform, which is the primary technical deliverable of the project. As discussed in Section
4.1 below, the Platform will provide a seamless infrastructure, linking tools to support engineers and safety
assessors in the cost-ŜŦŦŜŎǘƛǾŜ ŘŜǾŜƭƻǇƳŜƴǘ ŀƴŘ ŜǾŀƭǳŀǘƛƻƴ ƻŦ ŎƻƴǾƛƴŎƛƴƎ άassurance packsέ ŦƻǊ ǎŀŦŜǘȅ-
critical systems. ¢ƘŜǎŜ άŀǎǎǳǊŀƴŎŜ ǇŀŎƪǎέ ǿƛƭƭ ŎƻƳǇǊƛǎŜ ŜǾƛŘŜƴŎŜ ƻŦ ǘƘŜ ǎŀŦŜǘȅ ƻŦ ǊŜǳǎŀōƭŜ ŎƻƳǇƻƴŜƴǘǎΣ
with clear justification for the safety of these components within specific safety-critical systems.
/ƻƳǇƭƛŀƴŎŜ ǘƻ ǊŜƭŜǾŀƴǘ ǎǘŀƴŘŀǊŘǎ ǿƛƭƭ ōŜ ŘŜƳƻƴǎǘǊŀǘŜŘ ŀǎ ǇŀǊǘ ƻŦ ǘƘŜ άŀǎǎǳǊŀƴŎŜ ǇŀŎƪέΦ The OPENCOSS
Platform will support the OPENCOSS Approach, which will provide engineers with a structured, guided
process for the assurance of safety-critical systems created by the composition of these reusable
components. In this way, the assurance process for safety-critical systems will be brought into closer
accord with the process for the development of the systems ς which already features the composition of
discrete, reusable components to a large extent.

High-Level Requirements D2.2

FP7 project # 289011 Page 10 of 134

1.1 Relation with other tasks and work packages

The OPENCOSS Approach is dependent on the research results of the Work Packages 4 through 7 and in
concordance with the high risk goals of the OPENCOSS project as stated in [1]. Particularly the reduction of
recurring costs for component or product safety certification (or assessment) across vertical markets (like
application domains) is dependent on the compositional certification and the development of the common
certification language, respectively risk 2 and 3 in [1].

1.1.1 OPENCOSS Platform Architecture (Task 2.3)

The architecture of the OPENCOSS Platform is currently under development in task 2.3. The approach
adopted there has been to focus on high-level features of the Platform, which can be loosely decomposed
across the project.

The technologies to support the OPENCOSS Approach, and the tooling to be made available through the
infrastructure, are to be developed in Work Packages 4 through 7, which form the technical core of the
project. It is envisaged that these Work Packages will loosely correspond to the high-level features
identified in the Task 2.3 Architecture, though discussion of that is beyond the scope of the current
deliverable. The work undertaken in these Work Packages is as follows:

1.1.2 Common Certification Language (CCL) (WP4)

This Work Package is concerned with the development of a synthesized model of core safety concepts
from the OPENCOSS target domains, together with mappings from the standard-specific elements to the
synthesized concepts. The resulting Common Certification Language will provide a basis for the informed
reuse of assurance assets (parts of an assurance case) within and across the OPENCOSS domains, by
making explicit the intentions behind the original development of the assets and thus supporting engineers
in making informed decisions about the appropriateness of the reuse. Tool support for the CCL will also be
provided.

1.1.3 Compositional Certification (WP5)

The objective of this Work Package is to define a compositional or modular approach to system
certification which relies on the definition of contracts to capture the rely-guarantee relationships between
assured properties of reusable components. Challenge is to provide a means to facilitate the reuse of
certification assets within a safety argument framework. The safe operation of the system as a whole will
rely on complex assumptions and guarantees about the behaviour of the aggregated components, with
safety-related functions often being partitioned across diverse components. It will be the task of Work
Package 5 to clarify assumptions and component interdependencies in such a way as to make explicit to
what extent component reuse is possible in isolation from the original system context. The approach will
involve the development of freestanding argument modules, with associated evidence, which will be
composed to form an overall system safety argument.

1.1.4 Evolutionary Evidence Chain (WP6)

This Work Package is concerned with the development of an infrastructure to support the chain of related
ŜǾƛŘŜƴŎŜ ŦƻǊ ǘƘŜ ŀǎǎǳǊŀƴŎŜ ƻŦ ŀ ǎȅǎǘŜƳΩǎ ǎŀŦŜǘȅΦ The aim is to support the management and traceability of
reusing evidence artefacts to support the compositional argument structures developed in WP5. WP6 will
provide a means to characterize evidence artefacts, to de-risk their reuse by making clear precisely what
they offer to, and depend on, in terms of a generic assurance framework. It is essential that the original

High-Level Requirements D2.2

FP7 project # 289011 Page 11 of 134

assumptions and conditions relating to the production and recording of evidence artefacts ς and their
precise contribution to the support of an implicit or explicit assurance- or compliance- claim ς be stored, so
that reuse of the evidence can be informed, and the nature (and potential shortcomings) of its relevance
and guarantees in the reuse context be assessed.

1.1.5 Transparent Certification- and Compliance-Aware Process (WP7)

This Work Package aims to combine the technical approaches developed in WPs 4-6 in the definition of a
broad-ranging process for the management of the safety aspects of systems which is integrated with the
existing development lifecycle. It is the role of WP7 to model and understand processes and their required
contribution to the assurance of the product, and also to ensure that an awareness of assurance and
compliance issues informs the through-life development and deployment of the safety-critical product.

1.1.6 General remarks

Detailed requirements for these supporting technologies will be produced by the individual Work Packages
themselves. It is the role of Work Package 2 to provide high-level requirements for the OPENCOSS
Platform, which requirements will serve as input to the research and development work to be undertaken
in the technical Work Packages. This document provides a record of those requirements, and also details
the environment in which the Platform and Approach will be deployed. In the first stage of decomposition
of these high-level requirements, the requirements are to be partitioned across the core functions of the
OPENCOSS Platform defined in the Platform Architecture currently under development in Task 2.3 and
thence allocated to the various technical Work Packages, either as items for which a given Work Package
will have sole responsibility or ς in many cases ς as concerns to be shared between two or more of the
technical Work Packages. This work is currently in progress, in tandem with the requirements elicitation
work reported in this document.

1.2 What are high-level requirements?

There is an expectation that requirements will emerge at various levels of detail throughout the course of
a project, and that they will be interleaved with the various stages of architectural, system-level and
subsystem or component-level design work. In this way a stratified document set is achieved whereby
requirements at one level feed into the design work at the next layer down, from where the design
decisions result in requirements at that level, and so on. In practice, of course, things are not quite so neat,
and requirements tend to arise at different levels of detail in the various design-requirements iterations
(and sometimes even during the development process) and need to be managed accordingly, in terms of
the stratified project documentation.

The high-level requirements are the topmost level of requirements which act as input for the platform
architecture definition process. As such, they aim to mediate the high-level use case scenarios and
business concerns ς which, in OPENCOSS, were presented in deliverable D2.1 ς into abstract
characterisations of the broad functions of the platform, which can be allocated across the high-level
functional blocks defined in the architecture and also into statements describing non-functional concerns
at a very high-level. The high-level requirements are important because they provide the foundation for all
of the subsequent development deliverables. The high-level requirements describe the inputs and outputs
associated with each abstract function of the platform.

Whereas the business cases and high-level scenarios are written from the perspective of the enterprise
developing the platform and reflect the critical organizational objectives to be met, high-level
requirements are typically focussed on the technology to be developed, and are written from the

High-Level Requirements D2.2

FP7 project # 289011 Page 12 of 134

ǇŜǊǎǇŜŎǘƛǾŜ ƻŦ ǘƘŜ ŜƴŘ ǳǎŜǊΩǎ ƛƴǘŜǊŀŎǘƛƻƴ ǿƛǘƘ ǘƘŜ Ŧƛƴŀƭ platform. The high-level requirements document
details the abstract solution for the project, based on the ǳǎŜǊΩǎ ƴŜŜŘǎ ŀƴŘ ŜȄǇŜŎǘŀǘƛƻƴǎΦ It defines the
scope of the platform, and provides the basis for estimates of the size and likely cost of the project. There
is a fine balance to be struck here, however, since it should be remembered that the high-level
ǊŜǉǳƛǊŜƳŜƴǘǎΣ ŀǎ ǊŜǉǳƛǊŜƳŜƴǘǎΣ ǎƘƻǳƭŘ ǊŜƳŀƛƴ άƛƳǇƭŜƳŜƴǘŀǘƛƻƴ ƛƴŘŜǇŜƴŘŜƴǘέΥ ǘƘŜȅ ǎƘƻǳƭŘ ŘŜǎŎǊƛōŜ ǘƘŜ
features and functions required of and from the platform, without constraining the architects and
designers in how these are to be delivered.

Some of the most common objectives of a high-level requirements document, and specifically for the
OPENCOSS platform, are as follows:

¶ To provide the basis for negotiation with a platformΩǎ (user) stakeholders and direct customers as
to what their needs and expectations from the platform are;

¶ To provide a basis that is application-domain independent;

¶ To document these needs, and provide the basis for traceability back to them throughout the
requirements and design documentation, ensuring that the development is focussed strongly on
άǿƘŀǘ ǘƘŜ ǳǎŜǊ ǿŀƴǘǎέΤ

¶ To provide a basis for communication to the technology providers of what the platform needs to
do in order to satisfy the customer and user needs;

¶ To provide input for the high-level (architecture) design activities;

¶ To provide input for testing and other verification and validation activities ;

¶ To describe what the solution (in this case platform) must be able to do, abstracting from how it
will do this.

Specifically, there is a number of rules that requirements should adhere to: Requirements must be
uniquely identifiable, unambiguous, testable, free from implementation details etc. (See [4][3].) In
appendix 10 these rules are specified and adapted to the OPENCOSS needs.

It follows from the breadth of these objectives that a number of partners and stakeholders should be
involved in the creation of the high-level requirements. These should include:

¶ ¢ƘŜ ǇǊƻƧŜŎǘΩǎ ŎƻǊŜ ǘŜŀƳ ς in OPENCOSS terms, the Technical Director, Project Manager and
platform architects,

¶ User representatives ς in OPENCOSS, the representatives of manufacturer and independent safety
assessor partners of all application-domains,

¶ Process owners or representatives ς in OPENCOSS terms, the leaders of technical work packages,

¶ Subject-matter experts ς in OPENCOSS terms, these are likely to be specific user representatives,
drawn from the manufacturers or assessors.

In scoping the high-level requirements, it is important to be aware of the critical success factors of the
project, as defined by the principal customer stakeholders. Where possible, these should be measurable,
and validated with baseline metrics and targets. For OPENCOSS, a starting-point for these measures is
given in the DOW [1]. They should include an indication of the current performance in the area which the
solution seeks to target (i.e. the current cost and time implications for re-certification of safety-critical
systems in the target domains) and the aim of the proposed platform in terms of quantifiable
improvements in this area. High-level constraints on the specification should also be clarified: for example,
how much variation is permissible in the delivery of these success factors and how willing is the
consortium to produce a platform outside the immediate specification limitations, if the aims of the
project prove overly ambitious?

It is also common for a high-level requirements document to contain an explicit model of the safety
assessment domain in which the platform will operate, since the requirements themselves are only
logically valid, as statements, within this context and with relevance to the specific platform under

High-Level Requirements D2.2

FP7 project # 289011 Page 13 of 134

definition. Information about the domain is therefore necessary for the refinement of requirements
throughout the design process, and for validation that the platform requirements ς as a whole ς are
correct.

Domain knowledge which is mandatory for requirements refinement and validation falls into two main
types:

(i) Information concerning important characteristics, behaviours, and responsibilities of the platformΩǎ
stakeholders.
(ii) Information associated with the discrete different interfaces between relevant stakeholders and
the platformΩs functions.

Relevant domain knowledge is likely to take the form of definitions of domain entities, concepts etc.,
assumptions concerning their behaviour in particular sets of conditions, or information concerning
dependencies between them. Rationale for requirements decompositions, or for implementation details,
cannot strictly be classed as domain knowledge for requirements validation purposes: rather, it provides a
record of the relationship between the requirements, the domain and the specification, and should form
part of a (tacit or explicit) satisfaction argument traced to the requirement.

Domain information will be elicited, and recorded, as the requirements are clarified. The identity of the
ΨŘƻƳŀƛƴ ŜȄǇŜǊǘΩ, responsible for the model, is likely to change as the project progresses. For example, a
requirements specialist may pass his/her understanding of the platformΩǎ ŎƻƴǘŜȄǘ ǘƻ ŀ ǎƻŦǘǿŀǊŜ ŀǊŎƘƛǘŜŎǘΣ
who might pass it to a programmer, a tester or a maintainer. The important observation concerning
domain modelling for validation or refinement is that the domain knowledge exists somewhere ς the
model simply makes it easier to ensure that those decomposing or validating the requirements do so on
the basis of consistent, correct information, and that the process of information-gathering need not be
repeated.

To further elaborate on the characterization of high-level requirements, literature ([15], [16], [17])
indicates different abstraction levels on which requirements can be defined. For OPENCOSS we have based
our levels on the requirement abstraction model [16] where the product level is renamed into platform
level in order to avoid ambiguity: platform, feature (system), function (not functional), and component
(software) level. A characterisation of the requirements at these levels is as follows:

¶ On the platform level, requirements are goal-like in nature and express the intent of the platform.
They are closely related to the stakeholder goals and needs as originally stated in deliverable
D2.1 and which are refined in appendix 8. Stakeholder goals and needs are the source for the
requirements for the platform in the sense that they describe the goals and needs independent of
the platform characteristics. Platform level requirements ŀǊŜ ƻŦǘŜƴ ƴƻǘ ŬǘǘƛƴƎ ǘƘŜ ƴƻǊƳŀƭ
constraints of a requirement in that they should be unambiguous and testable (See Appendix 10,
rule 10 and 13 have been modified for this exception). In the context of OPENCOSS, goals relate to
the business problems to solve and business needs to meet by means of the OPENCOSS platform
όŜΦƎΦΣ ά{ǳǇǇƻǊǘ ǊŜǳǎŜ ƻŦ ŎƻƳǇƻǎƛǘƛƻƴŀƭ ŎƻƳǇƻƴŜƴǘǎέύΦ {ǳŎƘ ǇǊƻōƭŜƳǎ ŀƴŘ ƴŜŜŘǎ ŜȄƛǎǘ
independently from the existence of the platform. High-level scenarios describe the intended
interplay of different platform goals. (See Appendix 0);

¶ On the feature level, requirements are features that the platform supports. Feature level
requirements should ƴƻǘ ƻũŜǊ ŘŜǘŀƛƭǎ ŀǎ ǘƻ ǿƘŀǘ ŦǳƴŎǘƛƻƴǎ ŀǊŜ ƴŜŜŘŜŘ ƛƴ order for the product to
support a feature; rather the requirements should be an abstract description of the underlying
functions involved, as a group of functions. In general, a system feature [17] is characterised by (1)
representing an abstraction of the functionality of a system, (2) corresponding to a system
characteristic that is valuable for customer stakeholders, and (3) not being testable (i.e., a feature
must be refined or broken down in order to verify that a system supports it);

High-Level Requirements D2.2

FP7 project # 289011 Page 14 of 134

¶ On the function-level, requirements state what a user should be able to do (concrete actions that
are possible to perform), and also for non-functional requirements. The main criterion is that the
requirement should be descriptive of what a user (or the platform in the case of non-functional
requirements) should be able to perform/do. Function level requirements should strive to be
testable, consistent, traceable, measurable, unambiguous, etc. As a rule of thumb, function-level
requirements are detailed and complete enough to kick-start platform design. However, they are
not detailed and complete enough to, for instance, allow two separate development teams to
implement a same platform (specification) and that the platforms for both teams provide the same
functionality and/or services;

¶ On the component level, requirements are of a detailed nature depicting information that is closer
to how something should be solved, i.e., on the boundary of design information. The main reason
for the existence of this level is twofold. Many requirements that come from development sources
are on this level of abstraction. This level corresponds to requirements specified in such a detailed
and precise way that would allow the two developments used as an example above to implement
two systems with (almost) the same functionality and/or services. It should be possible to assign
the requirements specified at this level to the system components (architecture) that will provide
such functionality and/or service.

The requirements specification styles proposed for each level are:

¶ Platform level and feature level are expressed in textual specification (list), partially supported by
use case diagrams and high-level scenarios.

¶ Function-level: uses case diagrams.

¶ Component level: detailed user interface mock-ups, detailed use case scenarios, textual
specification of other functional requirements, textual specification of non-functional
requirements, and a data model.

For the high-level requirements we will focus on the platform and feature level. For clarification some
function-level requirements will be described as well.

High-Level Requirements D2.2

FP7 project # 289011 Page 15 of 134

2 Process for Creating High-Level Requirements

2.1 Steps and iterations

A number of steps is followed in the process of creating the high-level requirements. These steps are taken
from [4] and depicted in Figure 1.

The process for requirements elicitation, analysis, specification, and validation have not been followed in a
strict order, rather, we forced to do a number of iterations to come to the result as described in this
deliverable.

Figure 1: Requirements engineering steps reconstructed from [4]

2.2 Context: Business scenarios

When developing a software system, understanding and knowledge of the safety assessment domain are
keys for success and practically preconditions for adequate requirements elicitation and specification.

In order to elicitate the high-level requirements, a number of scenarios (storyboards, use cases, etc.) have
been defined. The scenarios are based on the most important business cases, all stakeholders involved,
and the e3 value models [21] that have been defined in OPENCOSS deliverable D2.1.

Figure 2 illustrates the general safety assessment process, which is abstracted from the domain-specific
processes relevant to the OPENCOSS target domains.

The main challenges addressed by these high-level use cases are:

High-Level Requirements D2.2

FP7 project # 289011 Page 16 of 134

a) reusing evidence for a next version of a safety-critical system,
b) reusing a safety case for a component or a subsystem in a new system, possibly across domains,
c) reusing (part of) a safety case in order to demonstrate compliance with another standard, possibly

across domains,
d) reusing a safety case for a system in another domain.

The basic underlying requirement is that there is a unification of concepts and requirements relating to the
demonstration of property, such as safety, assurance across the target domains.

2.2.1 General safety assessment process

In Figure 2 we see the generic business process of the safety assessment for all domains described in the
BPMN (business process modelling notation) [20]. The notation is aimed at identifying the consecutive
process steps in safety assessment. The most basic functions depicted here are at least present in all
domains. The diagram shows two swim lanes, which represent process steps undertaken by a vehicle
manufacturer (OEM ς upper swim lane) and a component supplier (lower swim lane). The component
supplier is included to show the implications for component or subsystem implementation within the
complete product development.

Figure 2 also incorporates a double V-model of both the manufacturing process (requirements, design,
development, tests), as well as the verification and validation process. The latter is depicted in the top
process line for both the OEM as for the component supplier. Note that only the άgood weatherέ process is
described - exceptional situations have been omitted for the sake of simplicity and understandability of the
figure. The figure shows only the process flow and does not include information streams. For example
information flows from Safety Plan to Requirements and from Requirements to Hazard/Risk Analysis, are
not included to avoid complicating the figure.

Safety Plan

V&V and
Tests

Safety
Assessment

Require-
ments

Hazard/
Risk

Analysis

Design &
Development

(Sub)system
Analysis [Assessment

did not find
deficiencies]

[Assessment found deficiencies]

Subsystem
AnalysisΩ

Hazard/
Risk

AnalysisΩ

V&V and
TestsΩ

OEM

Component
Supplier

Design &
DevelopmentΩ

process

Recurrent
processes

[condition]

Legend (BPMN ς business process modeling notation):

Start- and end node.

Process step

Transition flow from
one process to the next

Conditional fork with conditions
on the outgoing arcs and parallel
fork/ join.

Subprocess within a process

Cross domain

Figure 2: Cross domain safety assessment business process

High-Level Requirements D2.2

FP7 project # 289011 Page 17 of 134

Additionally, an example feedback loop is included in Figure 2 after the last safety assessment. This
demonstrates that the safety assessment has a filter function, where either the product is assessed as
acceptably safe or the assessment indicates a need to improve product safety. In Figure 2 an assessment
that has detected shortcomings in safety results for example in re-analysis of the subsystems. In most
cases, however, a safety assessment with a non-positive outcome will have repercussions in both V-model
cycles: there will be an impact on both the development of the product and its verification and validation.

The main cross-domain safety standard applicable to electrical, electronic or programmable electronic
systems or subsystems within the OPENCOSS target domains is the generic standard IEC 61508. For all
domains, there is a domain-specific reworking of IEC 61508. For example, in the automotive domain, the
requirements of ISO 26262 are an interpretation and specialisation of IEC61508 for the electrical,
electronic and programmable electronic aspects of road vehicles..

2.3 Requirements Elicitation

2.3.1 Wireframing

One of the techniques used in user experience (UX) design is wireframing. It is more specific than story
boarding and resembles prototyping and creating mock-ups. In this context, it is applied as an elicitation
technique to create a first impression of the requirements for the OPENCOSS platform.

A wireframe is a visual representation of a software layout design, sometimes referred to as a skeleton,
outline, blueprint, prototype screen, or mock-up. For example, website wire framing could only represent
the basic page layout structure, navigational scheme and major site components. Wireframes are made in
a variety of graphic design documents, and often remove all colour from the design (i.e. use a greyscale
colour palette) in instances where the final software is expected to have graphic design applied to it. This
helps to prevent confusion as to whether the prototype represents the final visual look and feel of the
application.

Wireframes may be utilized by different disciplines. Developers use wireframes to get a more tangible
ƎǊŀǎǇ ƻŦ ǘƘŜ ǎƛǘŜΩǎ ŦǳƴŎǘƛƻƴŀƭƛǘȅΣ ǿƘƛƭŜ ŘŜsigners use them to push the user interface (UI) process. User
experience designers and information architects use wireframes to show navigation paths between pages.
Business stakeholders use wireframes to ensure that requirements and objectives are met through the
design. Other professionals who create wireframes include information architects, interaction designers,
user experience designers, graphic designers, programmers, and product managers. Working with
wireframes may be a collaborative effort since it bridges the information architecture to the visual design.
Due to overlaps in these professional roles, conflicts may occur, making wireframing a controversial part of
the design process.

Wireframes may have multiple levels of detail and can be broken up into two categories in terms of
fidelity, or how closely they resemble the end product.

¶ Low-fidelity: Resembling a rough sketch or a quick mock-up, low-fidelity wireframes have less
detail and are quick to produce. These wireframes help a project team collaborate more effectively
since they are more abstract, using rectangles and labelling to represent content.

¶ High-fidelity: these wireframes are often used for documenting because they incorporate a level of
detail that more closely matches the design of the actual webpage, thus taking longer to create.

High-Level Requirements D2.2

FP7 project # 289011 Page 18 of 134

For simple or low-fidelity drawings, paper prototyping is a common technique. Since these sketches are
just representations, annotationsτadjacent notes to explain behaviourςare useful. For more complex
projects, rendering wireframes using computer software is popular. Some tools allow the incorporation of
interactivity including Flash animation, and front-end web technologies such as, HTML, CSS, and JavaScript.

The reason why we have applied this approach is that the wireframing connects very well to the system
thinking level of the OPENCOSS participants. By elaborating the designed user interfaces in the workshop
into use cases, the reason behind the sketches has become apparent and provides a good base for
elicitation of the high-level requirements for the OPENCOSS platform.

2.4 Requirements Analysis

Based on the results of the wireframing workshop a first analysis was made which resulted in an initial
domain model. The domain model is a kind of concept or class diagram that gives a good framework for
defining requirements and use cases. This finally ended in the domain model described in Section 3.3.

2.5 Requirements Specification: First set of HLRs

A first set of requirements was based on three major stakeholders, identified in OPENCOSS deliverable
D2.1 as the most important stakeholders and users of the future OPENCOSS platform:

(1) The Manufacturers, as the developers of safety critical systems and owners of the safety dossiers
that need to be assessed, and whose rework can be decreased;

(2) The Component suppliers or manufacturers of safety critical components, as the stakeholders
mostly benefitting from the compositional components;

(3) The Assessors that can also benefit from a reduction of rework when assessments are more
uniform and can include previous assessment results as well.

In Appendix 11 a cross domain use case that was developed at that time is defined to demonstrate the
biggest challenges of the OPENCOSS project.

2.6 Validation through Traceability

Each of the different levels of specification are validated using traceability. Requirements on a low level
must always be refinements or reifications of high-level requirements, high-level requirements must be
derived from stakeholder goals and needs, and those need to be derived from the business requirements.
In future these links will be checked and it will be validated whether each low-level requirement is
contributing to a higher level requirement and therefore to the business goals.

2.7 Future iterations

As indicated in the introduction, the process to come to well-defined high-level requirements is not a strict
one leading from platform level requirements, through feature- and function-level requirements, to
component-level requirements. Requirements can come from any stage in the process. For that reason,

the requirements database1, the glossary1, and user needs (D2.1) will be living artefacts that need
constant adaptation and refactoring in order to reflect a consistent view on the demands on the platform.

1 Currently implemented in Requirements.xls

High-Level Requirements D2.2

FP7 project # 289011 Page 19 of 134

3 Scope and domain model

3.1 Vision and Scope: explaining the Approach

The OPENCOSS project aims to produce the first European-wide open safety-assessment or certification
platform: an Open Platform for EvolutioNary Certification Of Safety-critical Systems, a self-sustainable
community that provides a software solution for the coming decades. The purpose of the platform is to
reduce the time and cost overheads for safety (re)certification for various vertical embedded system
markets. In the project, we specifically address the railway, avionics, and automotive domains. Other
domains, like aerospace, health, energy, etc. are not directly included in the analysis, but can be
considered as the general target domains as well.

The safety concept that is addressed in this project is the absence of unacceptable risks and threats directly
related to the functioning of the system. These unacceptable risks threaten the safety of humans, either as
the users of the system or indirectly as being exposed to the risk or threat. In some domains, the risk of
damage to the environment, in addition to or instead of human stakeholders, is explicitly included in the
definition of safety risk.

The common denominator in probably all domains (also the domains not directly considered in OPENCOSS)
is the fact that the developers or manufacturers of a safety-critical system are required to demonstrate
that it will be acceptably safe in a given context before it is formally approved for release into service. In
the domains included in OPENCOSS, demonstration can be provided by a safety case (though it is
important to note that not all of the standards explicitly require a safety case to be delivered). This is a
structured argument, supported by a body of evidence that provides a compelling, comprehensive and
valid case that a system is safe for a given application in a given operating environment. The
demonstration also includes support ŦƻǊ ǘƘŜ ŀǎǎŜǎǎƻǊΩǎ ŎƻƴŦƛdence in the argument (and therefore the
safety of the system in focus) and ŀƴ ŜȄǇƭƛŎƛǘ ŘŜƳƻƴǎǘǊŀǘƛƻƴ ƻŦ ǘƘŜ ǎȅǎǘŜƳΩǎ conformance to the relevant
standards.

Lƴ Ƴŀƴȅ ŎƻƳǇŀƴƛŜǎΣ ŜǎǇŜŎƛŀƭƭȅ ǘƘŜ ŎƻƳǇƻƴŜƴǘ ŀƴŘ ŜǉǳƛǇƳŜƴǘ ǎǳǇǇƭƛŜǊǎΣ ŀ ǎȅǎǘŜƳΩǎ ǎŀŦŜǘȅ ƛǎ ŘŜƳƻƴǎǘǊated
by compliance to standards, processes, or generally accepted checklists, rather than by the explicit delivery
of a safety argument. This approach is included in the OPENCOSS mission and vision. However, for
OPENCOSS to be able to transcend this domain-specific level and to demonstrate the safety of a reusable
component in other domains and its compliance to standards in the reuse domains, we need to consider
safety at a higher level of abstraction, to ensure that evidence of compliance in the original context can be
reasonably used to demonstrate safety in this new context as well. (This subject is further tackled in WP5,
Compositional Certification.) The explicit capture of generic concepts of safety and compliance, which can
be traced to standards, guidance documents and company practice, will offer this level of abstraction and
provide the basis for informed reuse of assurance evidence, documentation and argument, by indicating
areas where artefacts can straightforwardly be reused and areas where more caution ς or further work ς
may be required.

3.2 The Approach for the OPENCOSS Platform

The safety demonstration or safety case will therefore be a central concept in the OPENCOSS Platform. The
platform will be released as an open source tool infrastructure for safety assessments where the
development and progression of the safety case will have a central role. In this approach the platform core
will basically consist of a set of tools that:

High-Level Requirements D2.2

FP7 project # 289011 Page 20 of 134

1. Interface with existing development, test, management, argumentation, and safety-assessment
tools (both open- and closed-source) in order to guide engineers in reusing reliable, trusted,
compliant, possibly certified software that is broadly accepted by industry and regulators. The
existing tools need to provide additional value to the development of the safety case. Because
there is not taxonomy for the tools that are used in practice, we consider the existing tools that
will interface with the OPENCOSS Core, the OPENCOSS platform. See Figure 3;

2. Are created from or based on building blocks from OPENCOSS partners (Qualifying Machine from
AdaCore [22], Tecnalia tools for Compliance Management [23], etc), which provide additional
value to the development of the safety-critical system and its supporting safety case;

3. Alternately, are created from scratch and provide new functionality to the development of safety
cases or evidence artefacts. This should be kept to a minimum.

The OPENCOSS Platform will also provide tooling to support Safety Assessors in the evaluation of
assurance claims and arguments which are based on reused artefacts, for example establishing the
adequacy of a particular evidence artefact in a given context. Again, the Platform will interface with
existing tools, techniques and processes.

User (U1)

Manage
Artefacts

Manage
Repository«include»

Existing

tooling

OPENCOSS

Core

OPENCOSS

Platform

Figure 3Υ 9ȄŀƳǇƭŜ ǳǎŜ ŎŀǎŜ ΨaŀƴŀƎŜ !ǊǘŜŦŀŎǘǎΩ ǘƻ ŘŜƳƻƴǎǘǊŀǘŜ ǘƘŜ ǊŜƭŀǘƛƻƴǎƘƛǇ ōŜǘǿŜŜƴ ǘƘŜ ht9b/h{{ tƭŀǘŦƻǊƳΣ
existing tools, and the OPENCOSS Core.

The mission of the OPENCOSS project and the biggest challenge of the platform is to provide functionality
that supports guidance and re-use of assurance artefacts. It consists of:

a) providing guidance about how to comply with standards and regulations. This includes the
definition of a structured conceptual and tool framework to store knowledge about standards,
their interpretations, and the strategies/decisions to comply with standards;

b) reusing evidence for a next version of a safety critical system;
c) reusing a safety case for a component or a subsystem in a new system, possibly in a different

application domain;
d) reusing (part of) a safety case in order to show compliance to another standard, possibly across

domains. This would include inter-project reuse, where an asset is reused between projects within
the same organisation ς for example across a product line ς but where different standards are
applicable. It would also encompass inter-national reuse, where an asset is reused within the same
domain but between countries. In such instances, national interpretations or extensions to
standards are likely to be in place, even where there is a core European standard for the domain as
a whole;

e) reusing a safety case for a system in another domain;
f) providing transparency about the safety assurance and certification processes by improving the

awareness of the level of compliance and safety assurance process evolution to the different
stakeholders in manufacturer, supplier, and assessor companies. This also includes the definition of

High-Level Requirements D2.2

FP7 project # 289011 Page 21 of 134

functionalities to provide metrics and estimation about the costs, effort and time incurred in these
processes.

The platform must on the one hand exceed the functionality of a checklist, but on the other hand will
never generate the development of the safety case completely automatically; the user, either an assessor,
developer, must always have control over the judgements included in the safety case. The tool may
provide guidance to the user to improve the safety case by means of suggesting proven solution patterns.

The OPENCOSS platform will be released without any specific data of standards, knowledge of standards,
or specific expertise of the partners, if partners do not want to share this information. Future users must
provide the data for the safety demonstration, For example: the safety requirements from standards,
evidence, safety arguments, etc. Whether the interpretation of the standard can be shared openly, is at
this moment still under debate; standards are not free and only available under license; providing the
interpretation for this standard, would bypass these licences.

Note: the OPENCOSS platform exists of the external tool set and the OPENCOSS platform core. The
platform core is the functionality initially developed within the OPENCOSS project. The external tool set is
the existing set of tools that users already work with, and that may need an interface connection to the
platform core.

High-Level Requirements D2.2

FP7 project # 289011 Page 22 of 134

3.3 Conceptual Domain Model

The conceptual domain model defines the central concepts for the OPENCOSS platform and shows how
these concepts are related to each other. It not only describes the concepts used in the domain of
assessing and certifying safety critical systems, it also explains the approach that we advocate to meet the
high risk challenges of the OPENCOSS platform.

Meta
Glossary

Standard

Safety Plan
Product

Safety
Requirements

Glossary

Claims

Evidence

understanding of

argument

Repository

Hazards
mitigation

...

Process information

Product information

...

consists of

defined by

explaining

guiding

Company
practices/
guidance
document

guiding

understanding of

General context
Templates

Component

consists of

[C
o

m
p

o
n

e
n

t
a

s
s
u

ra
n

c
e

c
a

s
e

s
 o

n
ly

]

consists of

explaining
*

1

1

*

*

* *

[C
o

m
p

o
n

e
n

t
a

s
s
u

ra
n

c
e

c
a

s
e

s
 o

n
ly

]1

1
1

*

1

*

Component

11

Evidence
*

1

Assessment

Certification

consists of
*

applies to

*

1

1

Compositional component

Artefacts

Safety case /

Baseline /
Component

assurance case

1 1

Product/
Component

Figure 4: Aggregated OPENCOSS domain model

Figure 4 shows an aggregated domain model, showing the main concepts which are detailed in Figure 5.
Note that the figures follow the UML standard, but also include certain new elements. The figures mainly
express the relationships between the concepts or classes in the safety assessment domain; if necessary
arrows indicate the direction and verbs the quality of the relationship. Multiplicities of relationships are
ƛƴŘƛŎŀǘŜŘ ǿƛǘƘ ŀǎǘŜǊƛǎƪǎ όΨϝΩύΣ ǿƘƛƭŜ ǎǘǊƛŎǘ ƻƴŜ ƻƴ ƻƴŜ ǊŜƭŀǘƛƻƴǎƘƛǇǎ ƛƴŘƛŎŀǘŜ ŀ ƴǳƳōŜǊ ƻƴŜ όΨмΩύΦ /ƻƴǘŀƛƴŜǊǎ
ƛƴŘƛŎŀǘƛƴƎ ŀ ƳƻǊŜ ŀōǎǘǊŀŎǘ ŀƴŘ ƘŀǊŘŜǊ ǘƻ ƎǊŀǎǇ ŦƻǊƳŀǘΣ ƭƛƪŜ ŦƻǊ ŜȄŀƳǇƭŜ ǘƘŜ ΨƎŜƴŜǊŀƭ ŎƻƴǘŜȄǘΩ, are indicated
with a dashed linŜΦ 9ȄǘǊŀ ŀǘǘŜƴǘƛƻƴ Ƴŀȅ ōŜ ŘǊŀǿƴ ǘƻ ǘƘŜ ŎƻƴŎŜǇǘ ΨŀǊƎǳƳŜƴǘΩ in Figure 5. An argument is
expressed in natural language and only for humans to be interpreted correctly (if a correct interpretation is

High-Level Requirements D2.2

FP7 project # 289011 Page 23 of 134

something that is feasible at all); for this reason the argument concept is merely indicating a relationship
and not a class, and therefore depicted like that.

For an elaborate description of each of the concepts, we refer to 7, Appendix: Glossary of the OPENCOSS
Platform High-Level Requirements, where the concepts in de domain model are indicated in a different
colour.

/ŜƴǘǊŀƭ ƛƴ ǘƘŜ ŘƻƳŀƛƴ ƳƻŘŜƭ ƛǎ ǘƘŜ άǊŜǇƻǎƛǘƻǊȅέ ό{ŜŜ Figure 4). The repository is a structured means of
storage for all data, documents, information, and other artefacts that are necessary (or related) to the
safety assessment and possibly certification of the safety critical system. This includes two concepts: the
άŀǊǘŜŦŀŎǘǎέΣ ǇǊƻǾƛŘƛƴƎ ǘƘŜ ŦƻǳƴŘŀǘƛƻƴ ŦƻǊ ǘƘŜ ǎŀŦŜǘȅ ŎŀǎŜΣ ŀƴŘ ǘƘŜ άǎŀŦŜǘȅ ŎŀǎŜέ ƛǘǎŜƭŦΦ

Artefacts such as requirement documents, architecture and design documents, risk analyses, test plans and
results, safety plans, hazard mitigation plans, etc. together form the systems body of knowledge. The
artefacts explain what the system does, how it accomplishes this, how we can be sure of this, how it
interprets standards and how it adheres to this interpretation. This makes the collection of artefacts the
base for evidence in the certification process.

Needless to say, there are several external guiding forces that guide or shape the artefacts, such as
άǎǘŀƴŘŀǊŘǎέΣ άŎƻƳǇŀƴȅ ƎǳƛŘŜƭƛƴŜǎέΣ ŀƴŘ άŎƻƳƳƻƴ ǇǊŀŎǘƛŎŜǎέΦ !ǎ ǘƘŜ ŘŜǘŀƛƭŜŘ ŘƻƳŀƛƴ ƳƻŘŜƭ ǎƘƻǿǎΣ ǿŜ
can separate product and component as two separate concepts both defined by artefacts. The product
itself can be defined in terms of requirements. The decomposition of the system needed for compositional
certification can be defined in e.g. in the architectural design.

Another important and binding element (which may or may not be considered an artefact itself) is the
άƎƭƻǎǎŀǊȅέΦ ¢Ƙƛǎ ƭƛǎǘ ƻŦ ŎƻƴŎŜǇǘǎ ŀƴŘ ŜȄǇƭŀƴŀǘƛƻƴǎ ƛǎ ǘƘŜ ƎƭǳŜ ǘƘŀǘ ǘǊƛŜǎ ǘƻ ƳŀƪŜ ǎǳǊŜ ŀƭƭ ǇŀǊǘƛŜǎ ŀǊŜ ǿƻǊƪƛƴƎ
from the same base principles in any and all activities concerning the platformΦ ! άƳŜǘŀ-ƎƭƻǎǎŀǊȅέ Ŏŀƴ ōŜ
used to reason over multiple projects, systems, or standards while keeping true to the meaning of
concepts.

High-Level Requirements D2.2

FP7 project # 289011 Page 24 of 134

Meta
Glossary

Standard

Safety Plan
Product

Safety
Requirements

Glossary

Claims

Evidence

understanding of

Safety case /

Baseline /
Component

assurance case

Repository

Artefacts

Hazards
mitigation

...

Process information

Product information

...

consists of

defined by

explaining

guiding

Company
practices/
guidance
document

guiding

understanding of

Product

General context
Templates

Component

consists of

defined by

consists of

[C
o

m
p

o
n

e
n

t
a

s
s
u

ra
n

c
e

c
a

s
e

s
 o

n
ly

]

consists of

explaining
*

1

1

*

*

* *

[C
o

m
p

o
n

e
n

t
a

s
s
u

ra
n

c
e

c
a

s
e

s
 o

n
ly

]

1

1

1

1

1
1

*

1

*

Argument
module

Compositional
component

Component

11

Evidence
*

1

Assessment

Certification

consists of
*

applies to

*

1

1

Argument

Figure 5: Detailed domain model of OPENCOSS

¢ƘŜ άǎŀŦŜǘȅ ŎŀǎŜέ ǇǊƻǾƛŘŜǎ ǘƘŜ ƛƴŦƻǊƳŀǘƛƻƴ ŦƻǊ ŀ ōŀǎŜƭƛƴŜΣ ǘƘŜ ƴŜŎŜǎǎŀǊȅ ƛƴǇǳǘ ŦƻǊ ŀ ǎŀŦŜǘȅ ŀǎǎŜǎǎƳŜƴǘΦ
CǳǊǘƘŜǊƳƻǊŜΣ ƛǘ Ŏƻƴǎƛǎǘǎ ƻŦ άŎƭŀƛƳǎέ ŀƴŘ άŜǾƛŘŜƴŎŜέ ƭƛƴƪŜŘ ǘƻƎŜǘƘŜǊ ōȅ ƳŜŀƴǎ ƻŦ ŀƴ άŀǊƎǳƳŜƴǘέΦ ¢ŜƳǇƭŀǘŜǎ
may be used to streamline this and offer support in the form of argument patterns. The evidence can be
any kind of form as defined in [2], page 19, which ranges from all kind of product information, like
requirements, design, and implementation, to information on the followed process. The argumentation
may be on system level, but may very well be on component level, enabling compositional certification.

¢ƘŜ άŎŜǊǘƛŦƛŎŀǘƛƻƴέ ƛǘǎŜƭŦ Ŏƻƴǎƛǎǘǎ ƻŦ ŀƴ ŀǎǎŜǎǎƳŜƴǘ ƻŦ ǘƘŜ {ŀŦŜǘȅ ŎŀǎŜΦ ¢ƘŜ ŀǎǎŜǎǎƳŜƴǘ ǿƛƭƭ ƛƴǾŜǎǘƛƎŀǘŜ ǘƘŜ
validity of the argumentation over claims and evidence. The certification on component level will have to
take into account that there is a claim-argument-evidence structure for each component or collection of
components.

High-Level Requirements D2.2

FP7 project # 289011 Page 25 of 134

4 High-Level Requirements

4.1 Introduction

As defined in the introduction, high-level requirements are the requirements operating mainly on the
platform and feature level. Some of the requirements are on a function-level as well. The description of
the requirements abstract levels (derived from [16]) can be found in Section 1.2Σ ΨWhat are high-level
requirements?ΩΦ

In this chapter we first describe the full list of a ǊŜǉǳƛǊŜƳŜƴǘΩs attributes in Section 4.2, then we will show
the list of actors and stakeholders for the OPENCOSS platform in Section 4.3 , followed by a first overview
of the requirements in a couple of use case diagrams in Section 4.4. Finally the list of high-level
requirements for the OPENCOSS platform is described in Section 4.5.

4.2 Attributes of requirements

The requirements characteristics are listed in Table 1. For each of these attributes there is a description of
the attribute type, the constraints of the attribute, and the default value of the attribute.

Table 1: Attributes of the high-level requirements

Attribute Type Constraints Default

ID* The ID used in this requirements management
document.

Unique

Name* Brief identification of the requirement in a few
words.

Short description -

ParentID /
Refined from*

Parent ID - The ID of the requirement where this
requirement is refined from, the ΨparentΩ of the
current requirement

 -

Level* Level of the requirement, as explained in Section
1.2.

Platform, Feature,
Function, or
Component level.

Product

Assigned WP The work Package this requirement is assigned to. Maybe assigned to
multiple work
packages or even
traversal.

Traversal

Priority* MoSCoW priority, from Must-ƘŀǾŜ ǘƻ ²ƻƴΩǘ-have
priority.

Must, Should, Could,
Won't

 ² όǿƻƴΩǘύ

Rank Priority The number assigned to rate the exact priority of
the requirement. Derived from the more aggregated
MoSCoW priority.
Must: 1-19999
Should: 20000-39999
Could: 40000-59999
Won't: 60000-79999

 79999

Short
Description

Short description of the requirement

Description*

Detailed definition of the requirement. See Appendix

Ambiguous Vague words that will be explained in detailed sub- subrequirements -

High-Level Requirements D2.2

FP7 project # 289011 Page 26 of 134

Attribute Type Constraints Default

concept requirements must have the
parentID of this
(ambiguous)
requirement.

Status Proposed, accepted, implemented, rejected, . Must have a type,
and one type only

Proposed

OPENCOSS
Objective type

Common Certification Language, Compositional
Certification, Evolutionary Evidential Chain,
Transparent certification Process, Complance-
Aware Development Process, Global Platform.

Multiple types
allowed

None

Role/Actor
(Stakeholder)*

See Figure 6, the users; the stakeholders that

actively interact with the platform.

Multiple allowed None

Stakeholder* See Figure 6, indicating the stakeholders not

interacting with the platform.

Multiple allowed. None

Application
Domain

Indicating the domains it is valid for (automotive,
railway, avionics, maritime, aerospace, health,
nuclear plant, automation, general) If nothing is
indicated, the requirement is not bounded by a
domain.

Can have more than
one type assigned

None

Rationale* Rationale, explaining the ΨwhyΩ behind this
requirement.

 -

Source* Reference (standards, book, etc), person, company,
or other identification of the source of the
requirement. Typically, the source indicates from
which type of information this requirement is a
refinement of.

 -

Author(s) The person(s) creating the requirements. Probably,
but not necessarily the original owner.

 -

Project The Concerto project the requirement is associated
with. You can specify zero, one, or multiple projects.

Due Date The deadline for implementing the requirement.

Owner The login name for the person who is responsible
for the requirement.

Story Points A measure used to estimate the effort required to
implement a specific functionality. See Working with
Story Points for details.

Type* Functional or non-functional Non-functional
requirements
describe the quality
of functional
requirements.

Functional

Mapping Mapping to functional requirements Mapping to
functional
requirements if the
type is non-
functional.

Non-functional
category*

Cost/Price
Design Constraint
Memory Storage
Performance
Physical
Power Consumption
Reliability
Safety

Multiple

High-Level Requirements D2.2

FP7 project # 289011 Page 27 of 134

Attribute Type Constraints Default

Security
Standard Compliance
Usability

Functional
category

FUN - Functions/Operations
COM ς Communication
IS - Information Storage/Flow
UI - User Interface

one of them

Fit Criterion A measurement of the requirement such that it is
possible to test if the solution matches the original
requirement

Customer
Satisfaction

Degree of stakeholder happiness if his requirement
is successfully implemented

Scale from
1=uninterested to 5
= extremely pleased

Customer
Dissatisfaction

Measure of stakeholder unhappiness if this
requirement is not part of the final product.

Scale from 1=hardly
matters to
5=extremely
displeased

Conflicts Other requirements that cannot be implemented if
this one is.

* These attributes are detailed in the high-level requirements, Section 4.5 (if available for that requirement)

4.3 Stakeholders and Actors derived from users

From OPENCOSS deliverable D2.1, we take the stakeholders and, specifically, the users. These are depicted
in Figure 6. Note that the interfacing tools stakeholders are actually part of the OPENCOSS platform, but
not part of the OPENCOSS core functionality. The core will link to these tools using interfaces.

Assessor
Company (A3)

Manufacturer
Company (M1)

Safety
Engineer (E1)

European
Commission

(E3)

Safety
Assessor (S1)

National
Safety

Authority (N3)

National
Government

(G1)

Standards
Organisation

(S2)

Tool Provider
Company (T1)

User (U1) Interfacing
Tool (T2)

Development-
Tool (T3)

Test Tool (T4)

Assessment
Tool (T7)

Administrator
(A2)

Consumer
(C1)

Safety
(Project)

Manager (P1)

Argument
Developer

(A1)

European
Safety

Authority (E4)

Manufacturer
of Safety
Critical

Components
(M2)

Manufacturer
of Safety
Critical

System (M3)

Safety Case
Engineer (E2)

Management
Tool (T5)

Argumentation
Tool (T6)

Developer /
Tester (D1)

Users Stakeholders

(excluding users)

Figure 6: Stakeholders and actors involved in the OPENCOSS platform

High-Level Requirements D2.2

FP7 project # 289011 Page 28 of 134

4.4 Use case diagrams

Use cases emerged from the object-oriented development world. They describe the software from the
ǳǎŜǊΩǎ Ǉƻƛƴǘ ƻŦ ǾƛŜǿΦ tǊƻƧŜŎǘǎ ǘƘŀǘ Ŧƻƭƭƻǿ ŀƴȅ ŘŜǾŜƭƻǇƳŜƴǘ ŀǇǇǊƻŀŎƘ Ŏŀƴ ǳǎŜ ǘƘŜƳ ōŜŎŀǳǎŜ ǘƘŜ ǳǎŜǊ ŘƻŜǎ
not care how the software is built; he/she cares how to interact with it. Use cases are at the centre of the
widely used Unified Software Development Process [6].

Use cases are a technique for capturing the functional requirements of a system or platform. Use cases
work by describing the typical interactions between the users of a system and the system itself, providing a
narrative of how a system is used [6].

The use case diagrams are depicted in the figures below (See Figure 7, Figure 8, Figure 9, and Figure 10 for
an overview of use cases in the OPENCOSS platform. Figure 11, Figure 12, Figure 13, and Figure 14, provide
a more detailed view the specific requirements of individual actors.) Note that each use case refers with a
number between brackets to the ID of a high-level requirement. Table 2 describes the numbers of all high-
level requirements in this document. Section 4.5.2 through Section 4.5.10 describe the details of these
high-level requirements.

Safety
(Project)

Manager (P1)

Safety Case
Engineer (E2)

Safety
Assessor (S1)

Manage
Repository (197)

Manage
Safety/Assurance

Case (203)

Manage
Artefacts (204)

Do assessment
(prepare for

certification) (210)

«include»

«include»

OPENCOSS

Platform

Figure 7: ManufacturersΩ use case diagram, numbers refer to high-level requirement IDs

²Ŝ ǎǘŀǊǘ ǿƛǘƘ ǘƘŜ aŀƴǳŦŀŎǘǳǊŜǊΩǎ ǾƛŜǿǇƻƛƴǘ in Figure 7 since that is the main stakeholder providing the
safety critical systems and the documentation that needs to be assessed. They share the information with
assessors, they include the components of suppliers in their systems, they control the complete process.
Their viewpoint is the central one in the OPENCOSS platform. The high-level requirements are described in
Section 4.5.2.

Here in Figure 7, we see the repository as a central concept, again. This is the central point for collecting all
the input for the safety demonstration in the assessment. In Figure 8 this is the starting point of the
assessment. First there is an agreement on the compliance means between the safety assessor and the
safety manager, then the baseline for an assessment can be put together and delivered to the assessor.

High-Level Requirements D2.2

FP7 project # 289011 Page 29 of 134

The assessor is then able to audit the material and perform the assessment. The high-level requirements
are described in Section 4.5.3.

Safety
(Project)

Manager (P1)

Safety
Assessor (S1)

Compose
Compliance

Demonstration (211)

Navigate
Repository (121)

Formulate Agreement
on Compliance Means

(212)

Manage
Repository (197)

Audit Compliance
Items (213)

Do assessment
(prepare for

certification) (210)

Compose
Assessment Report

(48)

Audit Safety /
Assurance Case

(217)

«include»

«include»

«include»

«include»

«include»

«include»

OPENCOSS

Platform

Figure 8: Assessor use case diagram

In Figure 9 are the general functions of the platform for each user depicted. Users must be authenticated
and dependent on their role and access right level to the repositories they may navigate and manage the
content of the repository. The system records the main user operations in order to provide more process
information for the assessment and to be able to support a better awareness of the assessment impact.
The high-level requirements are described in Section 4.5.4.

High-Level Requirements D2.2

FP7 project # 289011 Page 30 of 134

User (U1)

Administrator
(A2)

Log User
Operations (103)

Maintain
History (221)

Propagate
Change (153)

Provide
access (140)

Authentication to
provide platform

security (207)

Navigate
Safety/Assurance

Case (222)

Safety Case
View (157)

Artefacts
View (150)

Claims - Evidence
View (162)

Argument Module
View (160)

Manage Platform
Configuration (3)

Manage View
Types (156)

Confidence
Arguments View

(164)

Compliance -
Arguments View

(165)

Compliance -
Evidence View

(167)

Evidence -
Characteristics

View (169)

Claim -
Characteristics

View (170)

View Process
Information (124)

Authorisation to
Platform (220)

Version
Support (117)

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include» «include»

«include»

«extend»

OPENCOSS

Platform

constrain

Figure 9: Use case diagram of the general user

The Safety Case Engineer is the future Safety Engineer that combines the expertise of the Safety Engineer
with the Argument Developer. This actor is very well capable to manage the understandings, the
translations from standards to safety requirements, safety claims, and compliance items. In Figure 10 we
see the aggregated functions that can support this expert in gap and impact analysis when changes in the
system relative to the safety argumentation occur. The high-level requirements are described in Section
4.5.5.

High-Level Requirements D2.2

FP7 project # 289011 Page 31 of 134

Safety Case
Engineer (E2)

Manage
Context (189)

Manage
Understandings (7)

Support Gap
Analysis (192)

Support Impact
Analysis (131)

Support Tailoring
using

Understandings (28)

Edit Context
(43)«include»

OPENCOSS

Platform

Figure 10: Safety Case Engineer use case diagram

High-Level Requirements D2.2

FP7 project # 289011 Page 32 of 134

Argument
Developer

(A1)

Manage Safety /
Assurance Case

(203)

Develop Safety
Case (187)

Develop Assurance
Case (224)

Develop Claim
(36)

Support Assurance
Arguments Development

using Template (188)

Support Formulation
of Claims using

Understandings (10)

Apply Template for
New Version (33)

Apply Template for
Cross-Standard
Compliance (34)

View All Inventory
of Evidence (225)

Query
Argument (27)

Show Evidence
Coverage/

Suitability (190)

Develop
Argument (171)

Manage
Evidence (37)

Show Evidence
Requirements for

Claim (30)

Support Finding
Suitable Evidence

(39)

Link Evidence
(31)

Manage Evidence
Characterization

(191)

Compose
Compliance

Demonstration (211)

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»
«include»

«include»

«include»

«include»

«include»

«include»
«include»

OPENCOSS

Platform

Figure 11: Argument Developer detailed use case diagram

Figure 11 ŘƛǎǇƭŀȅǎ ǘƘŜ ŜƭŀōƻǊŀǘŜ ht9b/h{{ ǇƭŀǘŦƻǊƳǎΩ ǎǳǇǇƻǊǘ ŦƻǊ ǘƘŜ !ǊƎǳƳŜƴǘ 5ŜǾŜƭƻǇŜǊΦ These are
detailed in the high-level requirements in Section 4.5.6.

High-Level Requirements D2.2

FP7 project # 289011 Page 33 of 134

Safety
Engineer (E1)

Manage
Artefacts (204)

Add Artefact

Remove
Artefact

Edit Artefact

Import Artefact
from Other Dossier

(22)

Support Tailoring
using

Understandings (28)

Edit Safety
Requirements

View Artefact

«include»

«include»

«include»

«include»

«extend»

OPENCOSS

Platform

Figure 12: Safety Engineer detailed use case diagram

The Safety Engineer is supported in his/her basic tasks as depicted in Figure 12. These are detailed in the
high-level requirements in Section 4.5.7.

High-Level Requirements D2.2

FP7 project # 289011 Page 34 of 134

Safety
(Project)

Manager (P1)

Manage
Artefacts (204)

Manage
Repository (197)

Manage
Safety Plan

View Planning

View Progress

View Process
Information (124)

View Assessment
Metrics (181)

«include»

«include»

«include»

«include»

«include»

OPENCOSS

Platform

Figure 13: Safety (Project) Manager detailed use case diagram

Figure 13 displays the Safety Project Manager functions aimed to be supported in the OPENCOSS platform.
These use case titles are detailed in the high-level requirements in Section 4.5.8.

High-Level Requirements D2.2

FP7 project # 289011 Page 35 of 134

Safety
Assessor (S1)

Audit Compliance
Items (213)

Query
Argument (27)

Show Evidence
Coverage/

Suitability (190)

Show Evidence
Requirements for

Claim (30)

Audit Safety /
Assurance Case

(217)

Support Finding
Suitable Evidence

(39)

View All Inventory
of Evidence (225)

Edit Context
(43)

View Context

Support Gap
Analysis (192)

Add compliance
recomendations

(46)

View Traceability to
Safety

Requirements (226)

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«extend»

OPENCOSS

Platform

Figure 14: Safety Assessor detailed use case diagram

Figure 14 displays tƘŜ {ŀŦŜǘȅ !ǎǎŜǎǎƻǊΩǎ ŦǳƴŎǘƛƻƴǎ ŀƛƳŜŘ ǘƻ ōŜ ǎǳǇǇƻǊǘŜŘ ƛƴ ǘƘŜ ht9b/h{{ ǇƭŀǘŦƻǊƳΦ ¢ƘŜǎŜ
use case titles are detailed in the high-level requirements in Section 0.

High-Level Requirements D2.2

FP7 project # 289011 Page 36 of 134

Developer /
Tester (D1)

View Available
Compositional

Components (173)

View Traceability to
Safety

Requirements (226)

View Missing
Evidence (168)

Query
Argument (27)

Navigate Product
Artefacts (123)

«include»

«extend»

OPENCOSS

Platform

Figure 15: Developer/Tester use case diagram

Figure 15 displays the functions aimed to be supported in the OPENCOSS platform for Developers and
Testers at the manufacturer company. These use case titles are detailed in the high-level requirements in
Section 4.5.10.

4.5 High-level requirements

The current2 high-level requirements, as gathered by the OPENCOSS consortium, are presented in a
number of tables, structured according to the most important attributes as indicated in Table 1. Attributes
that are not applicable to the high-level requirements or that have not yet been filled in consistently during
the process, have been left out. For this reason we only selected the identification number, name, type
(functional or non-functional and, if applicable a subcategory), priority, level

Table 2: ID number and name of the high-level requirements for the OPENCOSS platform

ID Description

3 Manage platform configuration

7 Manage understandings

10 Support formulation of claim using understandings

22 Import artefact into repository

27 Query argument

2 The OPENCOSS consortium acknowledges the fact that the requirements in this document form an initial
set of requirements. During the project, this set will be incrementally updated.

High-Level Requirements D2.2

FP7 project # 289011 Page 37 of 134

ID Description

28 Support tailoring using understandings

30 Show evidence requirements for claim

31 Link evidence

33 Apply template for new version of system/component

34 Apply template for cross-standard compliance

36 Develop Claim

37 Manage evidence

39 Support finding suitable evidence

43 Edit context

46 Provide compliance recommendations

48 Compose Assessment Report

103 Log User Operations

117 Version support

121 Navigate repository

123 Navigate product artefacts

124 View process information

124 View process information

131 Support impact analysis

140 Provide access

150 Support artefact viewing

153 Propagate change information

156 Manage view types

157 Safety Case View

160 Argument Module View

162 Claims-Evidence View

164 Confidence Arguments View

165 Compliance Arguments View

167 Compliance-Evidence-View

168 View missing evidence

169 Evidence-Characteristics View

170 Claim-Characteristics View

171 Develop Argument

173 View available compositional components

181 View assessment metrics

187 Develop safety case

188 Support assurance arguments development using template

189 Manage context

190 Show evidence coverage/ suitability

191 Manage evidence characterization

192 Support gap analysis

197 Manage repository

199 Shorten learning curve OPENCOSS Platform

200 Business use cases' requirements

201 Standards' requirements

203 Manage safety/assurance case

High-Level Requirements D2.2

FP7 project # 289011 Page 38 of 134

ID Description

204 Manage artefacts

205 Comply with ISO 9126 non-functionalities

206 Functionality (ISO 9126)

207 Authentication to provide platform security

209 Usability (ISO 9126)

210 Do assessment (prepare for certification)

211 Compose Compliance Demonstration

212 Formulate Agreement on Compliance Means

213 Audit Compliance Items

217 Audit Safety / Assurance Case

220 Authorisation to platform

221 Maintain history

222 Navigate safety / assurance case

224 Develop assurance case

225 View all inventory of Evidence

226 View traceability to safety requirements

High-Level Requirements D2.2

FP7 project # 289011 Page 39 of 134

4.5.1 General high-level requirements

This section shows a number of general high-level requirements that are mainly from a non-functional
nature. They are not directly represented in the use case diagrams, but essential for the correct
functioning of the platform.

201 Standards' requirements

Type Functional and non-functional

Priority Must-have

Level Platform

Description The platform should include the requirements that standards have on how to
work with artefacts. This includes both product and process requirements.

Actors Standards organisation (S2), Manufacturer Company (M1), European
Commission (E3), European Safety Authority (E4)

Rationale At this moment we cannot oversee all requirements that are included in the

Source The exact requirements are provided by standards, like CENELEC 510126/8/9,
ISO 26262, DO 178B, etc.

200 Business use cases' requirements

Type Functional and non-functional

Priority Should-have

Level Platform

Description The platform should include the requirements and constraints that the
OPENCOSS business use cases prescribe for the OPENCOSS platform as
described in deliverable D1.1 and D1.2 and annexes.

Actors Manufacturer Company (M1)

Source Deliverable D1.1, D1.2 including annexes

205 Comply with ISO 9126 non-functionalities

Type Non-functional

Priority Could-have

Level Platform

Description The ISO 9126 tries to cover all aspects of software quality in the definition of
non-functional requirements. Software should at least consider these aspects
to specify these in the context of the project at hand, in this case the
OPENCOSS project.

Source ISO Standard 9126, ISO Standard 250xx (SQuaRE)

High-Level Requirements D2.2

FP7 project # 289011 Page 40 of 134

206 Functionality (ISO 9126)

Refined from 205 - Comply with ISO 9126 non-functionalities

Type Non-functional

Priority Could-have

Level Platform

Description Suitability: This is the essential Functionality characteristic and refers to the
appropriateness (to specification) of the functions of the software.
Accurateness: This refers to the correctness of the functions. Interoperability:
This subcharacteristic concerns the ability of a software component to interact
with other components or systems. Compliance: This subcharacteristic
addresses the compliant capability of software. Possibly, the platform needs
to be regarded as safety critical software as well and needs to be certified.
Security: This subcharacteristic relates to unauthorized access to the software
functions.

Actors User (U1)

Source ISO Standard 9126

209 Usability (ISO 9126)

Refined from 205 - Comply with ISO 9126 non-functionalities

Type Non-functional

Priority Should-have

Level Platform

Description Understandability: Determines the ease of which the platforms functions can
be understood, relates to user mental models in Human Computer Interaction
methods. Learnability: Learning effort for different users, i.e. novice, expert,
casual etc. Operability: Ability of the software to be easily operated by a given
user in a given environment.

Actors User (U1)

Source ISO Standard 9126

High-Level Requirements D2.2

FP7 project # 289011 Page 41 of 134

199 Shorten learning curve OPENCOSS Platform

Refined from 209 - Usability (ISO 9126)

Type Non-functional, Usability

Priority Must-have

Level Platform

Description The OPENCOSS platform should provide a minimum of front-end interfaces;
they are new and must be learned by the users. This can be avoided by using
existing tools like the development, test, management- and assessment tools.
Application and Product life-cycle management (ALM/PLM) tools are more
specific examples that provide a good basis for the OPENCOSS platform rather
than to copy the functionality of those tools. Using these tools as a front-end,
will provide a much better introduction and adaptation for the user to work
with the OPENCOSS platform in general.

Actors User (U1)

Stakeholders Tool Provider (T1), Manufacturer Company (M1)

Rationale This is a rather a project requirement than a platform requirement, because
the reason for it can also be found in the restricted OPENCOSS project budget.
It might even be that usability can be improved by copying the functionality of
existing systems and improve it in the platform; this probably will take more
time for only one tool, than is available in the OPENCOSS project. Another
reason to use as many of the existing tools is that the user is familiar with a set
of existing tools. Therefore, interfacing with these tools facilitates introduction
of the OPENCOSS platform by avoiding the need for learning the tools and
thus providing a short and steep learning curve.

Source User goals and needs: U1.3

High-Level Requirements D2.2

FP7 project # 289011 Page 42 of 134

4.5.2 Manufacturer Main High-Level Requirements

The use case diagram in Figure 7 depicts the following high-level requirements. Note that a small number
already has been explained above and will not be described again.

197 Manage repository

Type Functional

Priority Should-have

Level Platform

Description The user is able to add, change, and delete artefacts to, in, or from the
repository, preferably through interfacing systems

Actors Safety Engineer (E1) and Safety (Project) Manager (P1), Interfacing Tool (T1)

Source Stakeholder need: E2.1, E2.3, A1.1, E1.4

204 Manage artefacts

Refined from 197 - Manage repository

Type Functional

Priority Should-have

Level Platform

Description The user is able to add, change, and delete artefacts to, in, or from the
repository, preferably through interfacing systems

Actors Safety Engineer (E1) and Safety (Project) Manager (P1), Interfacing Tool (T1)

Stakeholders Tool Provider Company (T1)

Source Stakeholder need: E2.1, E2.3, A1.1, E1.4

203 Manage safety/assurance case

Refined from 197 - Manage repository

Type Functional

Priority Must-have

Level Feature

Description The user is able to manage assurance cases, and safety cases in particular.
Managing means creating, reading, updating, and deleting the assurance or
safety case.

Actors Safety (Project) Manager (P1), Safety Case Engineer (E2)

Source Stakeholder need: E2.1, E1.1, A1.1, A1.2, A1.3, P1.1

High-Level Requirements D2.2

FP7 project # 289011 Page 43 of 134

210 Do assessment (prepare for certification)

Type Functional

Priority Must-have

Level Platform

Description The user is able to prepare and do the assessment on a
component/(sub)system and prepare the certification process (if the
assessment is positive).

Actors Safety (Project) Manager (P1), Safety Assessor (S1)

Stakeholders Assessor Company (A3)

Rationale The assessments include many of the activities for certification, but there are
still some additional certification actions necessary. These are not necessarily
supported.

Source Stakeholder need: P1.3, S1.1, S1.2, S1.3, S1.9

High-Level Requirements D2.2

FP7 project # 289011 Page 44 of 134

4.5.3 Assessors Main High-Level Requirements

The use case diagram in Figure 8 depicts the following high-level requirements. Note that a small number
of requirements already has been explained above and will not be described again.

211 Compose Compliance Demonstration

Refined from 203 - Manage safety/assurance case

Type Functional

Priority Must-have

Level Feature

Description The user is able to prepare the assessment for the assessor by creating a
baseline which includes all necessary items for assurance of safety
demonstration

Actors Safety (Project) Manager (P1)

Stakeholders Manufacturer Company (M1), Assessor Company (A1)

Rationale The baseline needs to be composed referring to the relevant artefacts in the
repository.

Source Stakeholder need: E2.1, E1.1, A1.1, A1.2, A1.3, P1.1

212 Formulate Agreement on Compliance Means

Refined from 210 - Do assessment (prepare for certification)

Type Functional

Priority Should-have

Level Feature

Description The user is able to formulate the agreement on the compliance means as
agreed between the Safety (Project) Manager and the Safety Assessor.

Actors Safety (Project) Manager (P1), Safety Assessor (S1)

Stakeholders Manufacturer Company (M1), Safety (Project) Engineer (P1)

Rationale After the Safety (Project) Manager and the Safety Assessor have come to an
agreement with what means the safety demonstration will be conducted, this
agreement needs to be consolidated somewhere in the Platform

Source OPENCOSS Genova Meeting

High-Level Requirements D2.2

FP7 project # 289011 Page 45 of 134

121 Navigate repository

Refined from 197 - Manage repository

Type Functional

Priority Must-have

Level Feature

Description The user is able to navigate through the different views within a repository.

Actors Safety Assessor (S1)

Source Stakeholder need: U1.1, E1.1, S1.1

217 Audit Safety / Assurance Case

Refined from 210 - Do assessment (prepare for certification)

Type Functional

Priority Must-have

Level Feature

Description The user is able to audit and check the assurance case (which sometimes is a
safety case). Auditing the assurance case is a large part of the assessment
activities of the assessor.

Actors Safety Assessor (S1)

Source Stakeholders need: S1.1, S1.2

213 Audit Compliance Items

Type Functional

Priority Must-have

Level Feature

Description The user is able to audit and check the compliance items. Compliance items
are tailored from (amongst others) the standards and form a large part of the
assessment activities of the assessor.

Actors Safety Assessor (S1)

Source Stakeholders need: S1.1, S1.2

High-Level Requirements D2.2

FP7 project # 289011 Page 46 of 134

48 Compose Assessment Report

Refined from 210 - Do assessment (prepare for certification)

Type Functional

Priority Should-have

Level Feature

Description The user is able to write an assessment report for each assessment that is
conducted, once the assessment has finished.

Actors Safety Assessor (S1)

Source Interviews with Assessors

High-Level Requirements D2.2

FP7 project # 289011 Page 47 of 134

4.5.4 General User High-Level Requirements

The use case diagram in Figure 9 depicts the following high-level requirements. Note that a small number
already has been explained above and will not be described again.

140 Provide access

Refined from 3 - Manage platform configuration

Type Functional

Priority Could-have

Level Feature

Description The platform shall enforce secure login for read and write access to stored
documents

Actors Safety Engineer (E1)

Stakeholders Manufacturer Company (M1), Assessor Company (A3), OPENCOSS consortium

Rationale Note that different types of access may be required

Source Stakeholder need: U1.1, M1.8, A1.3

220 Authorisation to platform

Refined from 207 - Authentication to provide platform security

Type Non-functional

Priority Should-have

Level Platform

Description The user must have an authorisation to the platform in order to do something
with it.

Actors User (U1)

Source Stakeholder need: M1.8, A1.3

207 Authentication to provide platform security

Refined from 206 - Functionality (ISO 9126)

Type Non-functional

Priority Must-have

Level Platform

Description The user needs to be authenticated by the platform to support prevention of
unauthorised access to the platform.

Actors User (U1)

Stakeholders Manufacturer Company (M1), Assessor Company (A1)

Source Stakeholder need: M1.8, A1.3

High-Level Requirements D2.2

FP7 project # 289011 Page 48 of 134

221 Maintain history

Refined from 197 - Manage repository

Type Functional

Priority Should-have

Level Platform

Description The platform is keeping track of the state of the repository in order to offer a
historical record of the chain of events during the development of the
repository. This information can be used to give more insight in evolutionary
chain of certification evidence, of the impact of decisions, cost estimations,
etc.

Actors Safety (Project) Manager (P1), Manufacturer Company (M1), Assessor
Company (A1)

Source Stakeholder need: P1.2, P1.4, M1.2, M1.4, M1.9, A1.2

103 Log User Operations

Refined from 221 - Maintain history

Type Functional

Priority Should-have

Level Feature

Description The platform tracks all accesses and main operations performed by users
with a timestamp into an audit log.

Actors Safety Assessor (S1)

Source Stakeholder need: P1.3

117 Version support

Type Functional

Priority Should-have

Level Function

Description The platform is keeping track of the versions of all items stored in the
repository, like artefacts, safety cases, etc.

Actors Safety Engineer (E1), Safety (Project) Manager (P1), Interfacing Tool (T1),
Safety Assessor (S1)

Source Stakeholder need: U1.1, U1.5, P1.3, E2.3

High-Level Requirements D2.2

FP7 project # 289011 Page 49 of 134

153 Propagate change information

Type Functional

Priority Must-have

Level Platform

Description The platform provides a means for the propagation of changes made to stored
artefacts throughout relevant project information

Actors Safety Engineer (E1), Safety (Project) Manager (P1)

Stakeholders Manufacturer Company (M1)

Rationale When a change is made, the impact on the argument and evidence
characterization must be clear

Source Stakeholder need: A2.1, U1.1, E1.1

222 Navigate safety / assurance case

Refined from 223 - Navigate repository

Type Functional

Priority Should-have

Level Feature

Description The user is able to navigate through an assurance case (which can be a safety
case as well) according to the cases hierarchical structure.

Actors Safety Assessor (S1), Argument Developer (A1)

Source Stakeholder need: U1.1, E1.1, S1.1

150 Support artefact viewing

Refined from 222 - Navigate safety / assurance case

Type Functional

Priority Should-have

Level Feature

Description The platform provides a means for suitably authorized users to view an
artefact stored in the repository

Actors Safety Assessor (S1), Safety Engineer (E1)

Stakeholders Manufacturer Company (M1)

Source Stakeholder need: U1.1, E1.1, S1.1

High-Level Requirements D2.2

FP7 project # 289011 Page 50 of 134

124 View process information

Refined from 150 - Support artefact viewing

Type Functional

Priority Should-have

Level Feature

Description The user is able to navigate through process information (e.g. the author of a
document, the number of tests failed in a test activity, etc.).

Actors Safety Engineer (E1), Safety (Project) Manager (P1), Safety Assessor (S1)

Source Stakeholder need: E1.1, S1.1, P4.1, P1.1

157 Safety Case View

Refined from 222 - Navigate safety / assurance case

Type Functional

Priority Should-have

Level Feature

Description The platform supports a view of the current state of the Safety Case

Actors Safety Engineer (E1), Safety (Project) Manager (P1), Assessor

Stakeholders Manufacturer Company (M1)

Source Stakeholder need: U1.1, E1.1, S1.1, A1.1

160 Argument Module View

Refined from 157 - Safety Case View

Type Functional

Priority Should-have

Level Feature

Description The platform shall support a summary view of the argument's constituent
modules

Actors Safety Engineer (E1), Safety Assessor (S1)

Stakeholders Manufacturer Company (M1)

Source Stakeholder need: A1.1, A1.2, E1.1, S1.1

High-Level Requirements D2.2

FP7 project # 289011 Page 51 of 134

162 Claims-Evidence View

Refined from 157 - Safety Case View

Type Functional

Priority Should-have

Level Feature

Description The platform supports a view by which the evidence supporting a particular
claim can be viewed alongside the claim

Actors Safety Engineer (E1), Safety Assessor (S1)

Stakeholders Manufacturer Company (M1)

Source Stakeholder need: A1.1, A1.2, E1.1, S1.1

164 Confidence Arguments View

Refined from 157 - Safety Case View

Type Functional

Priority Should-have

Level Feature

Description The platform supports a view by which the rationale for the decomposition of
a high-level claim and/or for the evidential support offered to a claim is shown
alongside the decomposition

Actors Safety Engineer (E1), Safety Assessor (S1)

Stakeholders Manufacturer Company (M1)

Rationale York would call this the confidence argument. It is necessary to provide a basis
for trusting the safety/product argument. The evidence characterization
information is part of the input to it, but it would need to be done manually. It
is particularly important for reused evidence or argument modules

Source Stakeholder need: A1.1, A1.2, E1.1, S1.1

165 Compliance Arguments View

Refined from 157 - Safety Case View

Type Functional

Priority Should-have

Level Feature

Description The platform provides a view by which the argument of compliance to a given
standard is displayed in solation

Actors Safety Engineer (E1), Safety (Project) Manager (P1)

Stakeholders Manufacturer Company (M1)

Source Stakeholder need: A1.1, A1.2, E1.1, S1.1, P4.1

High-Level Requirements D2.2

FP7 project # 289011 Page 52 of 134

169 Evidence-Characteristics View

Refined from 157 - Safety Case View

Type Functional

Priority Should-have

Level Feature

Description The platform shall support a view by which the characteristics of a given
evidence artefact can be viewed alongside the evidence artefact

Actors Safety Manager, Argument Developer (A1), Safety Assessor (S1)

Stakeholders Manufacturer Company (M1)

Rationale There may be a need to view evidence characterization information for
informed reuse

3 Manage platform configuration

Type Functional

Priority Must-have

Level Platform

Description The user is able to manage the configuration of the platform in his/her own
platform environment

Actors Administrator

Stakeholders Administrator

Source Stakeholder need: A2.1

156 Manage view types

Refined from 3 - Manage platform configuration

Type Functional

Priority Should-have

Level Feature

Description The platform shall support a variety of different views of the repository

Actors Safety Engineer (E1), Safety (Project) Manager (P1)

Stakeholders Manufacturer Company (M1)

Source Stakeholder need: U1.1, E1.1, S1.1, A1.1

High-Level Requirements D2.2

FP7 project # 289011 Page 53 of 134

4.5.5 {ŀŦŜǘȅ /ŀǎŜ 9ƴƎƛƴŜŜǊΩ IƛƎƘ-Level Requirements

The use case diagram in Figure 10 depicts the following high-level requirements.

189 Manage context

Refined from 197 - Manage repository

Type Functional

Priority Must-have

Level Platform

Description The user is able to manage (add, edit, and delete) the context of the
repository in order to define the extent of the safety assessment

Actors Safety Case Engineer (E2)

Stakeholders Manufacturer Company (M1)

Source Stakeholder need: E2.1

43 Edit context

Refined from 189 - Manage context

Type Functional

Priority Must-have

Level Feature

Description The user is able to edit the context of the safety project in order to define the
extent of the safety assessment

Actors Manufacturer Company (M1)

Stakeholders Manufacturer Company (M1)

Source Interviews with Assessors

7 Manage understandings

Refined from 197 - Manage repository

Type Functional

Priority Should-have

Level Platform

Description The user is able to install understandings of the concepts and terminology of
standards.

Actors Safety Case Engineer (E2)

Stakeholders Manufacturer Company (M1)

Rationale Standards need to be tailored in order to be able to assess systems at a
practical level

Source Stakeholders need: E2.1, E2.2, S1.5, S1.6, S1.9

High-Level Requirements D2.2

FP7 project # 289011 Page 54 of 134

28 Support tailoring using understandings

Refined from 184 - Edit repository

Type Functional

Priority Should-have

Level Feature

Description The platform supports tailoring of safety requirements, safety claims, and
compliance items and lists by using understandings.

Actors Safety Case Engineer (E2), Safety (Project) Manager (P1)

Rationale Understandings are generally accepted tailorings or 'interpretations' that help
transform the standards concepts into practically usable requirements, claims,
or check list items.

Source Stakeholder need: E2.1, E1.3

192 Support gap analysis

Refined from 197 - Manage repository

Type Functional

Priority Could-have

Level Platform

Description The platform supports finding gaps in the safety argument between claims and
evidence and the compliance list as provided by the manufacturer.

Actors Safety Case Engineer (E2), Safety Assessor (S1)

Stakeholders Assessor Company (A1), Manufacturer Company (M1)

Source Stakeholder need: S1.1, P1.1, E1.4, E2.1

131 Support impact analysis

Refined from 197 - Manage repository

Type Functional

Priority Should-have

Level Feature

Description The platform supports indicating the need for re-evaluation of artefacts based
on changes in the repository. It does so by automatically detecting (where
feasible) what other information needs to be re-analysed as impacted by the
change.

Actors Safety (Project) Manager (P1), Safety Case Engineer (E2), Safety Assessor (S1)

Source Stakeholder need: P1.2, P1.4, S1.2, S1.3, S1.5, U1.5, M1.2

High-Level Requirements D2.2

FP7 project # 289011 Page 55 of 134

4.5.6 !ǊƎǳƳŜƴǘ 5ŜǾŜƭƻǇŜǊΩǎ IƛƎƘ-Level Requirements

The use case diagram in Figure 11 depicts the following high-level requirements. Note that a small number
already has been explained above and will not be described again.

187 Develop safety case

Refined from 203 - Manage safety/assurance case

Type Functional

Priority Must-have

Level Feature

Description The user is able to create a safety case to demonstrate safety for a safety
critical system or component.

Actors Argument Developer (A1), Interfacing Tool (T1)

Source Stakeholder need: U1.1, E1.1, S1.1, A1.1

224 Develop assurance case

Refined from 203 - Manage safety/assurance case

Type Functional

Priority Must-have

Level Feature

Description The user is able to create an assurance case to demonstrate that a component
meets a set of predefined properties.

Actors Argument Developer (A1), Interfacing Tool (T1)

Source Stakeholder need: U1.1, E1.1, S1.1, A1.1

33 Apply template for new version of system/component

Refined from 188 - Support assurance arguments development using template

Type Functional

Priority As above.-have

Level Function

Description The user is able to create a safety case based on a template for within domain
reuse

Actors Argument Developer (A1), Interfacing Tool (T1)

High-Level Requirements D2.2

FP7 project # 289011 Page 56 of 134

34 Apply template for cross-standard compliance

Refined from 188 - Support assurance arguments development using template

Type Functional

Priority Should-have

Level Function

Description The user is able to create a safety case based on a template that allows for
cross standard safety assessment or property assurance, in order to
demonstrate compliance to another standard.

Actors Argument Developer (A1), Interfacing Tool (T1)

36 Develop Claim

Refined from 224 - Develop assurance case

Type Functional

Priority Should-have

Level Function

Description The user is able to formulate a claim.

Actors Argument Developer (A1), Interfacing Tool (T1)

10 Support formulation of claim using understandings

Refined from 7 - Manage understandings

Type Functional

Priority Should-have

Level Feature

Description The user is able to install understandings of the standard for safety claims

Actors Argument Developer (A1)

Source Stakeholder need: E1.1, A1.1, A1.2, S1.1, O2.1

30 Show evidence requirements for claim

Refined from 37 - Manage evidence

Type Functional

Priority Could-have

Level Feature

Description The platform supports suggesting the evidence requirements for a claim.

Actors Argument Developer (A1), Safety (Project) Manager (P1), Safety Case Engineer
(E2)

Source Stakeholder need: A1.1

High-Level Requirements D2.2

FP7 project # 289011 Page 57 of 134

171 Develop Argument

Refined from 224 - Develop assurance case

Type Functional

Priority Should-have

Level Feature

Description The platform provides support for the development and storage of arguments
and argument modules

Actors Safety Engineer (E1), Argument Developer, Requirements Engineer

Stakeholders Manufacturer Company (M1)

Rationale The 'argument' concept is not detailed further. This will be done in the
technical work packages.

Source Stakeholder need: U1.1, E1.1, A1.1

37 Manage evidence

Refined from 203 - Manage safety/assurance case

Type Functional

Priority Must-have

Level Feature

Description The user is able to manage evidence, add, remove, edit.

Actors Safety (Project) Manager (P1), Safety Case Engineer (E2)

Source Stakeholder need: U1.1, E1.1, P1.1, P1.2, A1.1, A1.2

39 Support finding suitable evidence

Refined from 37 - Manage evidence

Type Functional

Priority Could-have

Level Feature

Description The platform supports finding suitable evidence in the repository using a
match between on the one hand the claim requirements and on the other the
evidence characterization.

Actors Safety (Project) Manager (P1), Safety Case Engineer (E2)

Source Stakeholder need: A2.1

High-Level Requirements D2.2

FP7 project # 289011 Page 58 of 134

31 Link evidence

Refined from 37 - Manage evidence

Type Functional

Priority Must-have

Level Function

Description The user is able to link arguments and claims to evidence.

Actors Safety (Project) Manager (P1), Safety Case Engineer (E2)

Rationale Note that linking could also mean that the user is able to reuse evidence of
another project.

Source Stakeholder need: U1.1, E1.1, P1.1, P1.2, A1.1, A1.2

191 Manage evidence characterization

Refined from 37 - Manage evidence

Type Functional

Priority Should-have

Level Feature

Description The user is able to manage (add, edit, and delete) the evidence
characterization.

Actors Argument Developer (A1), Safety (Project) Manager (P1), Safety Assessor (S1)

Source D4.1 (Evidence characterization) and stakeholder need: A1.1

225 View all inventory of Evidence

Refined from 37 - Manage evidence

Type Functional

Priority Should-have

Level Function

Description The user is able to view all the inventory of every piece of evidence, like
evidence characterization, but also the more mundane information like name,
time stamp of creation, etc.

Actors Safety (Project) Manager (P1), Safety Case Engineer (E2), Safety Assessor (S1)

High-Level Requirements D2.2

FP7 project # 289011 Page 59 of 134

27 Query argument

Refined from 203 - Manage safety/assurance case

Type Functional

Priority Should-have

Level Platform

Description The user is able to query arguments

Actors Argument Developer (A1), Safety (Project) Manager (P1), Safety Assessor (S1)

Source Stakeholder need: A1.1

190 Show evidence coverage/ suitability

Refined from 27 - Query argument

Type Functional

Priority Should-have

Level Feature

Description The platform supports to visualize the evidence coverage and its suitability for
a specific safety case. It indicates the weaknesses in the argumentation, the
link between claims and evidence in a more quantified way.

Actors Argument Developer (A1), Safety (Project) Manager (P1), Safety Assessor (S1)

Source Stakeholder need: A1.1

High-Level Requirements D2.2

FP7 project # 289011 Page 60 of 134

4.5.7 {ŀŦŜǘȅ 9ƴƎƛƴŜŜǊΩǎ IƛƎƘ-Level Requirements

The use case diagram in Figure 12 depicts the following high-level requirements. Note that a small number
already has been explained above and will not be described again. Additionally, requirements that should
heavily rely on existing tools are not always detailed. Also note that the lower level requirements mostly
on the right side of the picture are still under development and not described in this document. .

22 Import artefact into repository

Refined from 20 - Create/Delete repository

Type Functional

Priority Should-have

Level Function

Description The user is able to import one or more artefacts into the repository of the
platform from other sources. These other sources include other repositories,
development or test environments, or safety dossiers. The functionality is
preferably offered by a tool interfacing with the platform.

Actors Safety (Project) Manager (P1), Safety Case Engineer (E1), Interfacing Tool (T1)

Source Stakeholder need: U1.1

4.5.8 Safety Project Manager High-Level Requirements

The use case diagram in Figure 13 depicts the following high-level requirements. Note that a small number
already has been explained above and will not be described again. Additionally, requirements that should
heavily rely on existing tools are not always detailed. Also note that the lower level requirements mostly
on the right side of the picture are still under development and not described in this document.

124 View process information

Refined from 150 - Support artefact viewing

Type Functional

Priority Should-have

Level Feature

Description The user is able to navigate through process information (e.g. the author of a
document, the number of tests failed in a test activity, etc.).

Actors Safety Engineer (E1), Safety (Project) Manager (P1), Safety Assessor (S1)

Source Stakeholder need: E1.1, S1.1, P4.1, P1.1

High-Level Requirements D2.2

FP7 project # 289011 Page 61 of 134

181 View assessment metrics

Refined from 121 - Navigate repository

Type Functional

Priority Should-have

Level Feature

Description The platform provides metrics on the completeness, coverage and reusability
of the compliance work

Actors Safety (Project) Manager (P1), Safety Assessor (S1)

Stakeholders Manufacturer Company (M1)

Source Stakeholder need: P1.1, P2.1, P4.1

4.5.9 Safety Assessor High-Level Requirements

The use case diagram in Figure 14 depicts only high-level requirements that already have been described in
the previous sections. It is clear that the other actors have the same requirements for the platform
functions as the safety assessor has, so they in principle are able to verify and check the system at hand as
rigorous as the assessor will be able to do.

4.5.10 5ŜǾŜƭƻǇŜǊΩǎ ŀƴŘ ¢ŜǎǘŜǊǎΩ IƛƎƘ-Level Requirements

The use case diagram in Figure 15 depicts the following high-level requirements.

173 View available compositional components

Type Functional

Priority Could-have

Level Feature

Description The platform supports to show an overview of all available compositional
components. Developers (and testers as well) are able to consult this overview
and see which compositional components are available across repositories.

Actors Developer / Tester (D1)

Stakeholders Manufacturer Company (M1)

Rationale Developers and testers should be stimulated to reuse compositional
components; components that have certain properties and for which these
properties have been demonstrated in an assurance case.

Source Stakeholder need: U1.1, U1.5, M1.2, M1.6, M2.1

High-Level Requirements D2.2

FP7 project # 289011 Page 62 of 134

123 Navigate product artefacts

Refined from 121 - Navigate repository

Type Functional

Priority Must-have

Level Platform

Description The user is able to navigate through product artefact information (e.g.
platform, subplatforms, etc.) for example through traceability links.

Actors Developer/Tester (D1), Safety Assessor (S1)

Source Stakeholder need: U1.1, E1.1, S1.1

226 View traceability to safety requirements

Refined from 123 - Navigate product artefacts

Type Functional

Priority Should-have

Level Feature

Description The user is able to view the relation between any product artefact to the
safety requirement using traceability links.

Actors Developer/Tester (D1), Safety Assessor (S1), Safety Case Engineer (E2)

Source Stakeholder need: M1.1

168 View missing evidence

Refined from 157 - Safety Case View

Type Functional

Priority Should-have

Level Feature

Description The platform provides a view that shows the missing evidence based on
unsatisfied safety requirements

Actors Developer/Tester (D1)

Stakeholders Manufacturer Company (M1)

Source Stakeholder need: M1.1

High-Level Requirements D2.2

FP7 project # 289011 Page 63 of 134

5 Conclusions

OPENCOSS implements an incremental approach to specify requirements. While Deliverable D2.1 provides
a first iteration to identify stakeholders, business cases, and user needs, this document (Deliverable D2.2)
compiles this information to create high-level requirement specifications. This document provides an initial
set of requirements that will incrementally be updated and improved serving both as input for discussions
as well as current understanding and guidelines for the work done in other work packages. It also describes
the process to be followed in iteratively improving the requirements.

Deliverables D4.2, D5.2, D6.2 and D7.2 will develop lower-level requirements. At the same time, and
because of the incremental nature of the project, high-level requirements will be refined in terms of
quality during the project. The goal is to converge in good requirement specifications both at high-level
and low-level. Good requirements must be: technically and legally possible, complete, clear, consistent
(not in conflict with other requirements), verifiable, and must be accomplished within OPENCOSS cost and
schedule.

This document provides the following key outcomes:

1. A preliminary conceptual domain model, which defines the main concepts that must be handled by
the OPENCOSS platform. This includes concepts such as standards, artefacts, claims, arguments,
evidences, composition, etc. The conceptual domain model is not intended to be normative in
OPENCOSS. It is just a basis to create further normative concepts, such as those that will be
included in CCL, and those manipulated by safety process assurance tools (in WP7).

2. A preliminary set of use cases that describe the expected OPENCOSS platform functionality as
regarded by the main stakeholders (manufacturers, suppliers, assessors). This set of use cases will
be refined in D2.3 (Architecture Design) to reflect a more modular organization of functionalities.

3. A preliminary list of high-level requirements, their attributes, and a glossary. We selected the main
high-level requirements from a database of requirements maintained by the OPENCOSS project.
This list, compiled from inputs from the consortium, reflects the current understanding of the
problem and solution.

The appendices provide additional information about high-level requirements, best practices, user needs,
ŀƴŘ ǾŀƭƛŘŀǘƛƻƴ ǎŎŜƴŀǊƛƻΩǎΦ

The OPENCOSS project aims high and its goals are not without risk. The goals are risky in the sense that the
challenges put before the OPENCOSS consortium are of a research nature without any guarantees that the
end result will be, what we have set out at the beginning.

Because of this nature, it is of the utmost importance to think carefully about the problem at hand and to
make explicit what the problem is, what its boundaries are, and what needs to be done to arrive at a
solution. In research it does not stop after this. Continuous re-evaluation of the requirement s is needed to
convince ourselves that we are on the right way to obtain the OPENCOSS goals and to cope with
unexpected insight gained along the way.

High-Level Requirements D2.2

FP7 project # 289011 Page 64 of 134

6 References

[1] OPENCOSS Description of Work (DoW), version date 2011-09-14.

[2] OPENCOSS Deliverable 6.1, Baseline for the evidence management needs of the OPENCOSS platform,
http://www.opencoss-
project.eu/sites/default/files/D6_1_Baseline_for_the_evidence_management_needs_of_the_OPENCOSS
_platform_final.pdf

[3] Heck, Petra, and Eekelen, Marco van, (2008) Technical report on the LaQuSo Software Product
Certification Model (LSPCM)

[4] Wiegers, Karl E., Software requirements (2nd edition), Microsoft Press, Redmond, Washington, 2003.

[5] Wiegers, Karl E., More About Software Requirements: Thorny Issues and Practical Advice, Microsoft
Press, Redmond, Washington, 2006.

[6] Jacobson, Ivar and Booch, Grady and Rumbaugh, James, The Unified Software Development Process (1
st

edition), Addison-Wesley Professional, 1999.

[7] Alistair Cockburn, 2001: Writing Effective Use Cases, Agile Software Development Series, Boston, MA,
Addison-Wesley

[8] Petra Heck and Marco van Eekelen, 2008: Technical report on the LaQuSo Software Product Certification
Model (LSPCM)

[9] http://www .businessrulesgroup.org/brmanifesto.htm, website with the business rules manifesto,
consulted on 4-9-2009, Business Rules Group.

[10] Arendsen, Martin, Heck, Petra, et al, 2008, Succes met de requirements! (Success with the
requirements!), SDU Uitgevers bv. Den Haag.

[11] Schader, Martin, and Korthaus, Axel, 1997, Modeling Java Threads in UML, 2-97, Lehrstuhl für
Wirtschaftsinformatik III, Universität Mannheim, Schloß, D-68131Mannheim, Germany

[12] Eriksson, Hans-Erik, Penker, Magnus, Lyons, Brian, and Fado, David, 2004, UML 2 Toolkit, Wiley
Publishing, Inc.Indianapolis, Indiana.

[13] Spolsky, J., http://www.joelonsoftware.com/articles/fog0000000035.html, website about functional and
technical specificaǘƛƻƴǎΣ ΨtŀƛƴƭŜǎǎ CǳƴŎǘƛƻƴŀƭ {ǇŜŎƛŦƛŎŀǘƛƻƴǎ - tŀǊǘ нΥ ²Ƙŀǘϥǎ ŀ {ǇŜŎΚΩΣ ŎƻƴǎǳƭǘŜŘ ƻƴ мс-9-
2009.

[14] Schader, M. and Korthaus, A., 1998, Modeling Java Threads in UML, in: Schader, M. and Korthaus, A.

(eds.): "The Unified Modeling Language - Technical Aspects and Applications", Physica-Verlag,
Heidelberg, 1998, pp. 122-143

[15] Stan Bühne, Günter Halmans, Klaus Pohl, Matthias Weber, Henning Kleinwechter, Thomas Wierczoch,
2004, Defining Requirements at Different Levels of Abstraction, Proceedings of the 12th IEEE
Internŀǘƛƻƴŀƭ wŜǉǳƛǊŜƳŜƴǘǎ 9ƴƎƛƴŜŜǊƛƴƎ /ƻƴŦŜǊŜƴŎŜ όw9ΩлпύΦ

[16] Tony Gorschek and Claes Wohlin, 2006, Requirements Abstraction Model, Requirements Engineering
(2006) 11: 79ς101.

[17] Vara, J.L. de la, 2011, Business process-based requirements specification and object-oriented conceptual
modelling of information systems. PhD thesis,
http://riunet.upv.es/bitstream/handle/10251/11445/tesisUPV3622.pdf?sequence=1, consulted on 11-7-
2012

[18] Eric Verhulst et al., 2011, Formal Development of a Network-Centric RTOS: Software Engineering for
Reliable Embedded Systems (Springer, New York)

[19] OpenComRTOS-Suite Manual and API Manual v1.4 (Altreonic NV, Linden, Belgium). Available for
download from http://www.altreonic.com

http://www.opencoss-project.eu/sites/default/files/D6_1_Baseline_for_the_evidence_management_needs_of_the_OPENCOSS_platform_final.pdf
http://www.opencoss-project.eu/sites/default/files/D6_1_Baseline_for_the_evidence_management_needs_of_the_OPENCOSS_platform_final.pdf
http://www.opencoss-project.eu/sites/default/files/D6_1_Baseline_for_the_evidence_management_needs_of_the_OPENCOSS_platform_final.pdf
http://www.businessrulesgroup.org/brmanifesto.htm
http://www.joelonsoftware.com/articles/fog0000000035.html
http://riunet.upv.es/bitstream/handle/10251/11445/tesisUPV3622.pdf?sequence=1
http://www.altreonic.com/

High-Level Requirements D2.2

FP7 project # 289011 Page 65 of 134

[20] Stephen A. White, Derek Miers Future Strategies Inc.,BPMN modeling and reference guide ς
understanding and using BPMN, Lighthouse Pt, FL (2008)

[21] E3 value toolset website, http://e3value.few.vu.nl, consulted on 24-7-2012

[22] Adacore Qualifying Machine, http://www.open-do.org/projects/qualifying-machine, consulted on 24-7-

2012

[23] Technalia website, http://www.tecnalia.com, consulted on 24-7-2012

http://e3value.few.vu.nl/
http://www.open-do.org/projects/qualifying-machine
http://www.tecnalia.com/

High-Level Requirements D2.2

FP7 project # 289011 Page 66 of 134

7 Appendix: Glossary of the OPENCOSS Platform High-Level Requirements

The OPENCOSS Platform concepts are describes in Table 3. For the abbreviations in this document we refer to page 7 (Abbreviations and Definitions). Each
concept description contains a concept name, a description, a life cycle description, the application domain or context where it is used in, and a source. The
concepts which have a different colour are part of the domain model. (See Section 3.3 Conceptual Domain Model)

The appendix describes the concepts ǘƘŀǘ ǿƛƭƭ ōŜ ǳǎŜŘ ǘƻ ŘŜŦƛƴŜ ǘƘŜ ht9b/h{{ ǇƭŀǘŦƻǊƳΦ ¢Ƙƛǎ ƛǎ ƴƻǘ ŀƴ ŀǘǘŜƳǇǘ ǘƻ ŎƻƭƭŜŎǘ ǘƘŜ ǎǘŀƴŘŀǊŘǎΩ ŎƻƴŎŜǇǘǎ, rather it
is a common, cross-application glossary that captures the essence of the concepts cross application have in common. Sometimes the concept of one of
major standards in an application domain is captures the essence quite well, sometimes a definition is constructed to better match the approach that we
have chosen. The source column indicates the origin of the concept.

Table 3: Concepts used in the high-level requirements for the OPENCOSS platform

Concept
(in domain model)

Description Life cycle Application
domain /
Context

Source

Actor A person or an external system a certain role or different system
interacting with the platform in a unique, defined role.

Architecture The fundamental organization of a system embodied in its
components, their relationships to each other and to the
environment, and the principles guiding its design and evolution.

 IEEE1471

Argument A series of claims connected by reasoning and inference and
supported by evidence which establishes the acceptability of a
conclusion, in a given context

Argument module A self-contained line of argument (claims and evidence) offered
in support of one particular claim. In a graphical argument
representation, the argument module packages the self-contained
line of argument, for ease of comprehension and reuse. In a
modular safety argument, an argument module is likely to present
argument in support of a high-level claim about the assurance
provided by a particular component in the context of the system.

High-Level Requirements D2.2

FP7 project # 289011 Page 67 of 134

Application domain The set of concepts and facts relevant to a particular type of
business or technical interest. The OPENCOSS project is initially
focussed on three application domains of interest: avionics,
railway, and automotive.

Artefact A versioned document or data item, or collection of these;
'certification artefact' or 'assurance artefact' that indicates a
document, data item, or collection required as part of the
demonstration of assurance or compliance, either an evidence
item, argument fragment or requirements document. Note that
the term may be used at different levels of granularity - for
example to refer to a single requirement, or an entire document.

 See also the
evidence taxonomy
of D6.1, p18.

Assessment The process of verifying that the product has met its specified
requirements and identifying, quantifying, and prioritizing (or
ranking) the vulnerabilities (hazards) in a system

 Wikipedia/CENELEC

Assurance Case A structural argument, supported by a body of evidence, that
provides a compelling, comprehensible and valid case that a
component or subsystem is meeting a specific set of properties
for a given application in a given operating environment. The
assurance case usually refers to the body of evidence, rather than
that it is a part of the assurance case. (See also Safety Case)

Authorisation The formal permission to use resources of the platform within
specified application constraints.

 OPENCOSS
interpretation from
CEI EN 50129:2004-
01 and RBAC

Authentication Action to confirm the identity of a person or software program,
performed by the platform

 Wikipedia

Baseline Subset of the repository indicating one safety case (including
claims, arguments, and evidence - including the version number
of the appointed artefacts) which is intended to be complete and
consistent and which forms a basis for an assessment at a
particular stage in the assessment process.

High-Level Requirements D2.2

FP7 project # 289011 Page 68 of 134

Certification Legal recognition by the certification authority that a product,
service, organization or person complies with the requirements.
Such certification comprises the activity of technically checking
the product, service, organization or person and the formal
recognition of compliance with the applicable requirements by
issue of a certificate, license, approval or other documents as
required by national laws and procedures. In particular,
certification of a product involves: (a) the process of assessing the
design of a product to ensure that it complies with a set of
standards applicable to that type of product so as to demonstrate
an acceptable level of safety; (b) the process of assessing an
individual product to ensure that it conforms with the certified
type design; (c) the issuance of a certificate required by national
laws to declare that compliance or conformity has been found
with standards in accordance with items (a) or (b) above.

 Avionics,
Railway, NOT
automotive (see
assurance for
automotive)

DO-178B:1992, DO-
297:2007

Characteristics and
dependencies of
argument modules

The set of assumptions required to understand the context in
which an argument module is stated and can be considered valid.
Also, the guarantees which the argument makes to other modules
in a compositional context and the dependencies that must be
fulfilled by other modules if it is to be successfully composed.

This will need validation with WP5.

Characteristics of
evidence

The set of contextual information reflecting the original
circumstances of the evidence's production, and the limitations
which apply on its reuse, in terms of the types of claims it can
support

This will need validation with WP6 WP6

High-Level Requirements D2.2

FP7 project # 289011 Page 69 of 134

Claim An assertion, the truth of which can be established by reasoning
and evidence presented in an argument. In a safety argument, a
claim is a statement about the safety of the product. In order for
a claim to hold, the adverse consequences of a claim are to be
considered and the degree of risk considered tolerable. Claims are
necessary items within a safety argument. See argument.

A claim is created from tailoring a standard's
requirements within the degrees of freedom
in this standard into a product and/or project
specific claim. The top claim of a safety case
usually has the form: product X in context Y
will be acceptably safe. Claims may be added,
changed, or deleted throughout the time of a
project. A claim is part of the argumentation
that is used to demonstrate safety of a
product. Once the safety demonstration is
assessed and approved, the project has ended
and the claim is not changed anymore. It can
be reused (copied) in another project.

Context The set of assumptions and circumstances in which an argument
claim, a requirement, an activity or a piece of evidence is valid.
Note that context is applicable at several levels of detail: we might
talk of the 'general context' for an artefact, such as "This
argument is offered in the context of DO-178B", or might refer to
the local validity of a particular characteristic of the general
context for a particular aspect of an artefact, e.g. "Paragraph X of
DO-178B has particular relevance to this particular claim." Note
that, in a safety argument, local context asserted as relevant to a
particular claim is inherited by all subclaims deriving from that
claim.

Commercial off-the-
shelf (COTS) software

Software defined by market-driven need, commercially available
and whose fitness for purpose has been demonstrated by a broad
spectrum of commercial users.

 CEI EN 50128:2002-
04

Company practice Document recording the process to be applied within a company
for some aspect of engineering a product. Of particular relevance
to OPENCOSS are company safety practices, which trace to - but
sometimes exceed - the requirements of standards and which are
most immediately followed by engineers.

High-Level Requirements D2.2

FP7 project # 289011 Page 70 of 134

Company process Sequence of steps to achieve an engineering or assessment goal.
The company process can be described in a set of rules and/or
practices. Company processes can be divide into assessment and
development process (see company assessment process and
company developemnt process).

Note that although company processes are
inspired by and derived from safety standards,
they may differ from these in some details.

Company assessment
process

The company process aimed at one or more assessments.

Company development
process

The company process aimed at product or system development.

Compliance The extent to which developers of safety-critical systems have
acted in acŎƻǊŘŀƴŎŜ ǿƛǘƘ ǘƘŜ άǇǊŀŎǘƛŎŜǎέ ǎŜǘ Řƻǿƴ ƛƴ ǘƘŜ
standard. More narrowly we can think of this as consistency
ōŜǘǿŜŜƴ ǘƘŜ ŀŎǘǳŀƭ ŘŜǾŜƭƻǇƳŜƴǘ ǇǊƻŎŜǎǎ ŀƴŘ ǘƘŜ άƴƻǊƳŀǘƛǾŜέ
models prescribed in the standards.

Compliance argument Argument demonstrating why the author believes that a system
and/or the processes used to develop it complies with the
requirements of a particular safety standard. This is a meta
argument.

Compliance gap The set of compliance requirements that have been not met in a
given safety dossier regarding the expected or standard-specified
requirements

Compliance
requirements

Those requirement statements of which satisfaction implies
adherence to some aspect of a domain-specific standard

Compliance requirements are used as safety
requirements from the beginning of the
software development project. Dissatisfaction
may result in a revision in one of the previous
steps in the development process. The product
must satisfy all compliance requirements,
which may be managed though rigorous
traceability.

Component A self-contained part, combination of parts, subassemblies or
units, which performs a distinct function of a system.

 DO-178B:1992

High-Level Requirements D2.2

FP7 project # 289011 Page 71 of 134

Conclusion A high-level claim which is reached by a logical inference process
from lower-level claims and evidence. The highest-level point
supported by an argument.

Configuration The structuring and interconnection of the hardware and
software of a system for its intended application.

 CEI EN 50129:2004-
01

(Safety) Dossier A safety dossier contains all the artefacts intended for safety
assessments and certification. In contrast with the repository,
the safety dossier is not created within the OPENCOSS platform. If
a safety dossier is created in the OPENCOSS platform we speak of
a repository. (See repository)

Element part of a product that has been determined to be a basic unit or
building block

 EN-50128-2001
Glossary

Error a deviation from the intended design which could result in
unintended system behaviour or failure

 EN-50128-2001
Glossary

Evidence Evidence consists of a collection of documents that provide
evidentiary support to a set of claims in an argument. In other
words, evidence is information, based on established fact or
expert judgment, which is presented to show that the claim to
which it relates is valid (i.e., true) in the context of the argument.
Anything that supports the claim can be presented as evidence.
Often, this information is a record of some sort, demonstrating
that a certain event or process took place. Evidence can be
diverse as various things or artefacts may be produced as
evidence, such as documents, expert testimony, test results,
measurement results, records related to process, product, and
people, etc.

Evidence
Characterization

An abstraction or model of evidence that establishes the
necessary fine-grained characteristics of evidence elements
required for detailed safety assurance, compliance demonstration
and certification (or assessment) activities.

Failure The inability of a system or system component to perform a
required function within specified limits. A failure may be
produced when a fault is encountered.

 DO-178B:1992

Fault An abnormal condition which could lead to an error or a failure in
a system. A fault can be random or systematic.

 CEI EN 50128:2002-
04

Function A mode of action or activity by which a product fulfils its purpose. CEI EN 50129:2004-

High-Level Requirements D2.2

FP7 project # 289011 Page 72 of 134

01

Glossary An alphabetical list of terms relating to a specialised application
domain or subject, with definitions. This is not the definition of
this OPENCOSS platform glossary.

Guidance Document In the safety domain, a document containing advice and
recommendations for engineering practices relating to the
development, justification and assessment of safety-critical
systems. Although these documents do not have the legal force
of standards, in practice compliance with them is essentially
mandatory in certain application domains. In aerospace, for
example, the ARP documents (Aerospace Recommended Practice)
have the force of standards, though they are technically guidance
documents.

Hazard a real or potential condition that can cause injury, illness or death
to personnel; damage to or loss of a system, equipment or
property; or damage to the environment

 MIL Std 882d
Definitions Section

Hazard analysis The process of identifying hazards and analysing their causes, and
the derivation of requirements to limit the likelihood and
consequences of hazards to a tolerable level.

 CEI EN 50129:2004-
01

Hazard log The document in which all safety management activities, hazards
identified, decisions made and solutions adopted, are recorded or
referenced.

 CEI EN 50129:2004-
01

Hazard mitigation Any action taken to reduce the risk of occurrence of a hazard, or
the consequences that result from an occurrence.

Implementation The activity applied in order to transform the specified designs
into their physical realisation

 CEI EN 50129:2004-
01

Interfacing tools The tools that users already use to develop, manufacture, and
assess safety critical systems.

Interpretation Subjective part of tailoring and/or understanding. In order to
make a choice in the degrees of freedom that a standard offers,
one needs to rely on inductive reasoning, possibly intuition. This
part may be described by arguments.

High-Level Requirements D2.2

FP7 project # 289011 Page 73 of 134

Is able to a property of the system that provides the user with an option. It
could also be read as the required ability of the user to execute
the desired action. This is of course also the case, but more of a
prerequisite than a requirement.

Maintainability The probability that a given active maintenance action, for an
item under given conditions of use can be carried out within a
stated time interval when the maintenance is performed under
stated conditions and using stated procedures and resources.

 IEC 60050(191)
referred to in CEI
EN 50126:2000-03

Maintenance The combination of all technical and administrative actions,
including supervision actions, intended to retain a product in, or
restore it to, a state in which it can perform a required function.

 IEC 60050(191)
referred to in CEI
EN 50126:2000-03

Meta glossary A conceptual schema describing a domain, revealing all relevant
entities and relations. With meta glossaries, concepts in different
application domains, standards, and interpretations of standards
can be mapped on each other, linking application domains and
standards.

(OPENCOSS) Platform Platform to support safety assessments that is the end product or
deliverable of the OPENCOSS project, or even a further developed
product as defined within the scope of the OPENCOSS project.

Permissions A set of defined rights, which can be granted or denied by an
administrator user, enabling a user to perform certain
(administrative) functions on data items stored in the OPENCOSS
Platform

 RBAC (Role based
access control)

Product A collection of (sub)systems that are interconnected to each
other. The end result of the development and manufacturing
processes. The product is an implementation of the collection of
(sub)systems it consists of and its safety requirements.

Product requirements These are the functional and non-functional requirements
describing what the product should do; this could include safety
requirements, but these do not necessarily overlap each other.

High-Level Requirements D2.2

FP7 project # 289011 Page 74 of 134

Process of the safety
assessment project

The process involved in a safety assessment project. In ideal cases the safety assessment project
tends to start and stop at the same moments
as the development/manufacturing process
does.

Repository A structured means of storage for all artefacts, like complete set
of work products and other items necessary for a safety
assessment. This may include claims, arguments, evidence, and
references to archived project repositories in all sorts of forms.
The project repository does not exclude development artefacts.

The repository is typically created when the
development project is created. When the
project ends, the repository is archived and
can be referred to (partly) from other projects
when the other project reuses (parts of) this
repository. Throughout projects, the
repository will incorporate more links between
the artefacts in the repository.

Rationale Justifications for choices made and statements made (statements
like requirements)

Redundancy The provision of one or more additional measures, usually
identical, to provide fault tolerance.

 CEI EN 50129:2004-
01

Reliability The ability of a (sub)system or component to uphold a certain
performance level during a certain period of time and under
certain circumstances. Reliability is regarded as the behavior of a
(sub)system or component in the presence of errors.

 ISO 9126-1:2001

Requirement A statement of a stakeholder need or objective, or of a condition
or capability that a product must possess to satisfy such need or
objective.

 Wiegers, 2003

Reuse Applying an existing (possibly already assessed) safety dossier or
repository in a new context with the aim to assess it in this new
context and avoid rework.

Risk The probable rate of occurrence of a hazard causing harm and the
degree of severity of the harm.

 CEI EN 50126:2000-
03

Safety Freedom from unacceptable levels of risk. CEI EN 50128:2002-
04

High-Level Requirements D2.2

FP7 project # 289011 Page 75 of 134

Safety assessment
project

A project that involves all activities necessary for a safety
assessment. A project has a begin and end date, people involved,
a number of goals, possibly a number of go/no-go's, planning, a
budget, assigned capacity (people), and a number of risks and
mitigations. The project is closely linked to the development of a
safety critical system.

Ideally, the safety assessment project starts
with the system development project kick-off.
At that point, the (safety) requirements, the
safety plan, and the standards involved are set
and will not change, unless there is a good
reason for it and a change procedure followed
in order to account for these changes. During
the project, the safety case (if present) will be
built up, the compliance items (if not already
defined) will be defined, the evidence for the
safety assessment will be gathered (all will be
stored in the project repository), and in close
relation, the safety critical system will be built.
The project ends successfully after the safety
critical system has been finished and the safety
assessment is successful.

Safety case A structural argument, supported by a body of evidence, that
provides a compelling, comprehensible and valid case that a
system is safe for a given application in a given operating
environment. The safety case usually refers to the body of
evidence, rather than that it is a part of the safety case. (See also
Assurance Case)

Safety integrity level
(SIL)

One of a number of defined discrete levels for specifying the
safety integrity requirements of the safety functions to be
allocated to the safety related systems. Safety Integrity Level with
the highest figure has the highest level of safety integrity.

 CEI EN 50126:2000-
03

Safety plan A safety plan describes the strategy a company follows to assure
the safety of the product. The strategy includes choice of
standards, interpretation of standards, and company standards.

High-Level Requirements D2.2

FP7 project # 289011 Page 76 of 134

Safety requirement Safety requirements are functional and non-functional
requirements that concern the safety of a product.

Safety requirements will be included ideally at
the start of the assessment project and may
be adjusted in a later stage. Safety
requirements may be the result of an
understanding or tailoring of the standard at
hand.

Safety-critical system A system (hardware, software or a combination of the two) of
which the correct operation is essential to the protection of
human life, the prevention or injury or harm to humans or the
environment, or the operation failure of which could lead to loss
of human life, injury or harm to humans or the environment.

Standard Standards are documented agreements containing technical
specification or other precise criteria to be used consistently as
rules, guidelines, or definitions of characteristics, to ensure that
materials, products, processes and services are fit for their
purpose

Support (verb) Activities that might help the user to perform his/her work and do
not hinder the user in his/her work.

System A collection of components organized to accomplish a specific
function or set of functions. The term system encompasses
individual applications, systems in the traditional sense,
subsystems, systems of systems, product lines, product families,
whole enterprises, and other aggregations of interest.

 IEEE1471

System development
project

An effort, bounded by time and resources, in which a (software)
system is defined, constructed, tested, and deployed

System lifecycle The activities occurring during a period of time that starts when a
system is conceived and end when the system is no longer
available for use, is decommissioned and is disposed.

 CEI EN 50126:2000-
03

Tailoring The application of a concept within the context of a project within
the degrees of freedom allowed by the standard.

Tailoring may be the outcome of the
negotiations between manufacturers and
assessors. It is always in the context of a
product and project, so a tailoring can only be

High-Level Requirements D2.2

FP7 project # 289011 Page 77 of 134

used limited within another project or context.
Tailorings can be upgraded to understandings
if it is made consistent with all of the contexts
and application domains included in the
OPENCOSS platform.

Technical safety report Documented technical evidence for the safety of the design of a
system/sub-system/equipment.

 CEI EN 50129:2004-
01

(Argument) Template A good-practice guideline for creating arguments that prescribes a
number of mandatory and possible elements (claims, subclaims,
strategies, etc.) for a certain generic type of use,for example the
reuse of a component in the same application domain.

Traceability (1) The degree to which a relationship can be established
between, two or more products of the development process,
especially products having a predecessor, successor, or master-
subordinate relationship to one another; for example, the degree
to which the requirements and design of a given software
component match. (2) The degree to which each element in a
software development product establishes its reason for existing;
for example, the degree to which each element in a bubble chart
references the requirement that it satisfies.

 Adapted from IEEE
glossary of
Software
Engineering
Terminology

Understanding Understanding of a concept or terminology within a standard. The
understanding is an OPENCOSS approved concept which gives a
more detailed translation of the standard in such a way that it
defines the standard's concept in a well-defined context and
tackling all known ambiguities involved in the standard. The
understanding also involves a tailoring and unavoidable
interpretation of the standard within the degrees of freedom of
the standard. There may be multiple understandings of a
standard. Understandings involve concepts like safety
requirements, safety claims, compliance items, safety processes.

An understanding is created after approval of
the OPENCOSS community (representatives) It
may be based on a project-level related
tailoring. Understandings may evolve during
projects, creating different versions with other
translations from the standards. For re-use
purpose, and keeping track of changes, these
versions need to be stored or archived.

High-Level Requirements D2.2

FP7 project # 289011 Page 78 of 134

Use case A detailed description of how an actor uses the system (what
response by what input). Use cases are represented graphically in
use case diagrams. The use case scenarios describe the steps
involved in a particular use case.

Validation Confirmation by examination and provision of objective evidence
that the particular requirements for a specific intended use have
been fulfilled.

 CEI EN 50126:2000-
03

Verification The activity of determination, by analysis and test, at each phase
of the life-cycle, that the requirements of the phase under
consideration meet the output of the previous phase and that the
output of the phase under consideration fulfils its requirements.

 CEI EN 50129:2004-
01

High-Level Requirements D2.2

FP7 project # 289011 Page 79 of 134

8 Appendix: Stakeholder needs

The list of stakeholder needs is derived from D2.1, updated and listed in Table 4.

Table 4: Stakeholder need

Stakeholder Description/responsibility Goal or need Goal and needs ID Source

This includes all stakeholders from direct users to wider environment stakeholders on a distance

(Safety)

Project

Manager

Person that works on a
compliance and
assurance-based project
where the a product
(system, or component)
needs to be assessed as
acceptably safe (or meet
any other property).

Goal to achieve the project's
goals within planned
budget, within planned
time, within planned
resources.

P1.1

 Need to find out why the project
is not achieving its goals
within planned budget,
planned time, within
planned resources and to
mitigate the source and
replan the project.

P1.2

 Need to plan resources, view
and produce metrics on
the progress of the project
at hand, and to manage
workflows in order to get a
better

P1.3 D2.1

 Need to predict the time,
resources and other costs
required for assessment of
products more precisely

P1.4 D2.1

High-Level Requirements D2.2

FP7 project # 289011 Page 80 of 134

 Need to cooperate with Safety
(Case) Engineers (E2) and
Safety Assessors (S1)

P1.5

Safety Case

Engineer

Person responsible for
the demonstration and
argumentation of
assurance of the safety of
a system being developed
by a manufacturing
organisation.

Goal to demonstrate safety of
the product in a safety
case or demonstrate the
component's or system's
properties required for an
assurance case.

E2.1

 Need to reuse argument and
evidence artefacts relating
to the safety of a reused
component

E2.2

 Need to plan, review, view,
develop, store, and save
workflows, evidence
artefacts, safety
arguments and
compliance checklists.

E2.3 D2.1

 Need to cooperate with (Safety)
Project Managers (P1)
and Safety Assessors (S1)

E2.4

Safety

Engineer
Person responsible for
the demonstration of
safety of a system within
a system or component
manufacturing
organisation.

Goal to demonstrate safety of
the product in a safety
case or demonstrate the
component's or system's
properties required for an
assurance case by
providing the claims and
required evidence.

E1.1

 Need to better identify the safety
requirements

E1.2 D2.1

 Need to interpret the standard in
a given context or

E1.3

High-Level Requirements D2.2

FP7 project # 289011 Page 81 of 134

circumstance.

 Need to manage the artefacts
and to set up a stable
baseline for an assessor
to evaluate

E1.4

Argument

Developer
Person responsible for
the presentation of an
argument of assurance of
the safety of the system
or subsystem being
developed by a
manufacturing
organisation.

Goal to create or modify an
argument that efficiently
demonstrates that a
product, (sub)system, or
component is acceptably
safe.

A1.1

 Need to create a clearer insight
in the system's safety.

A1.2 D2.1

 Need to increase insight in how
systems can be assessed.

A1.3

Safety

Assessor
Person responsible for
assessing the adequacy
of the evidence and
assurance ópackageô
provided by the
manufacturers, in terms
of demonstrating the
safety of the system or
component under
consideration. Depending
on the domain, and on the
nature of the system
under consideration, the
safety assessor may be
more or less independent
of the manufacturing
organisation.

Goal to assess whether a safety
demonstration of a
product, or assurance
demonstration of a system
or component is
acceptable.

S1.1 D2.1

 Need to view the baseline
artefacts like workflows,
arguments, compliance

S1.2 D2.1

High-Level Requirements D2.2

FP7 project # 289011 Page 82 of 134

checklists and evidence
relating to the system or
component.

 Need to do so (S1.2) with a
stable unchangeable
baseline

S1.3

 Need to wish to remain confident
that the safety of systems
can be assured, and to
reduce the time and cost
overheads inherent in
repeated or overly
cumbersome work
occasioned by the
presentation of safety
justification and evidence
data in a format which is
difficult to read and
navigate

S1.4 D2.1

 Need to avoid tedious rework S1.5 Interview
manufacturers

 Need to simplifying the safety
assessment

S1.6 D2.1

 Need to improve trust and
insight in assurance and
safety assessments from
other assessors (cross-
acceptance)

S1.7 D2.1

 Need to benefit from previous
assessments on
same/similar systems
(delta-assessment)

S1.8 D2.1

 Need to better understand how
the manufacturer plans to
provide assurance of the
safety of the product

S1.9 D2.1

 Need to improve locating
deficiencies and
inconsistencies in the

S1.10 D2.1

High-Level Requirements D2.2

FP7 project # 289011 Page 83 of 134

safety critical system

 Need to reduce time and costs
for assurance and safety
assessments

S1.11 D2.1

 Need to cooperate with (Safety)
Project Managers (P1)
and Safety Assessors (S1)

S1.12

Administrator Setting up and
maintaining the system,
the OPENCOSS platform

Goal to provide users with a
smooth working system so
they can assess the
product, system, or
component at hand

A2.1

User General user of the
OPENCOSS system

Goal to achieve the work goals
more efficiently and
effectively, with an
awareness of the safety
engineering activity and
the implications and
limitations of evidence
artefacts

U1.1

 Need to work with pleasure U1.2

 Need to learn how to use a new
way of working in a
relatively short time

U1.3

 Need be able to use (most) of
the existing tools for doing
the work

U1.4

 Need to avoid repetitive, tedious
(assessment) work

U1.5

 Need to correct errors that have
been made and possibly
endanger the safety of the
system.

U1.6

High-Level Requirements D2.2

FP7 project # 289011 Page 84 of 134

Manufacturer

Company
Company that produces
products, systems, and/or
components

Goal to demonstrate that the
produced safety critical
system or product is
acceptably safe, or that
the system or component
meets the assurance
properties

M1.1

 Need to avoid costly rework M1.2 Interview
manufacturers

 Need to desire to improve the
safety of products ï and to
be able to demonstrate
this safety by convincing
justification.

M1.3 D2.1

 Need to decrease or at least
avoid increase in the cost
of safety assessment as a
proportion of system
development costs

M1.4 D2.1

 Need to decrease the number of
negligence claims arising
from accidents or product
recalls relating to safety
concerns

M1.5 D2.1

 Need to transfer more accurately
technical information
between assessment
bodies

M1.6 D2.1

 Need to benefit from previous
created safety
cases/assurance cases on
same/similar systems
(delta
recertification/assessment)
even if these safety cases

are not created according
to the procedures of the
OPENCOSS platform

M1.7

High-Level Requirements D2.2

FP7 project # 289011 Page 85 of 134

 Need to protect company's
intellectual property from
competitors and restrict
sharing information only to
authorized personnel

M1.8

 Need to gradually change to a
new way of working,
thereby avoiding high
sudden costs in software
acquisition and training of
personnel.

M1.9 Interview
manufacturers

Manufacturer

of Safety

Critical

Components

Company that produces
sub-systems and/or
components, also
referred to as 'Supplier'

Goal to demonstrate that the
produced safety critical
subsystem or component
is meeting the properties
that are necessary for this
component in an
assurance case.

M2.1

 Need to desire common
contractual interfaces to
integrators of diverse
safety-critical systems
across the automotive and
other application domains

M2.2 D2.1

Manufacturer

of Safety

Critical

Systems

Company that produces
products

Goal to demonstrate that the
produced safety critical
system is acceptably safe
in a safety case.

M3.1

Assessor

company
Company that verifies
and validates the safety of
safety critical systems
(products, systems,
components)

Goal to validate the safety of a
safety critical system
(product, system,
component) or to indicate
the shortcomings of the
safety critical system.

A3.1 D2.1

 Need to reduce time and costs
for assurance and safety

A3.2 D2.1

High-Level Requirements D2.2

FP7 project # 289011 Page 86 of 134

assessments

 Need to handle the data of the
manufacturer confidentially

A3.3

European

Commission
Commission for
stimulating cooperation
and development of
knowledge and
competitive power of the
European Community.
Project's sponsor and
funder.

Goal to maximize the output of
the European project
OPENCOSS in terms of
saving time and costs in
safety assessments and to
improve safety of safety
critical systems.

E3.1 D2.1

 Need to stimulate cooperation
between regulators,
standardisation bodies,
certification institutes. Etc.

E3.2

National

Government
Entity representing a
souvereign country

Goal to represent the national
political bodies which hold
ultimate authority for
safety in the transport
domains and which
delegate to the national
safety authorities.

G1.1 D2.1

European

Safety

Authority

Generic placeholder for
the European overseers
of overall transport safety
in the aerospace and
railway domains.

Goal stimulate and benefit
politically from the
enhanced visibility of
safety assurance

E4.1 D2.1

National

Safety

Authority

National bodies
responsible for safety in a
particular domain (note
that this is not directly
relevant in automotive). Goal

to be able to answer to the
national governments.

N3.1 D2.1

High-Level Requirements D2.2

FP7 project # 289011 Page 87 of 134

Consumer User of the safety critical
(transport) systems

Goal to avoid knock-on costs in
the purchase of transports
and new vehicles which
might be occasioned by a
more expensive approach
to safety, while at the
same time being assured
that the systems are safe.
They also wish to have a
means to come to an
informed decision about
the safety of various car
models to inform future
purchase, as well as for
assurance of the safety of
the car they currently own.

C1.1 D2.1

 Need to travel even safer C1.2

Standards

Organisation
Organisation to bring
together certain experts
on a specific subject in
order to prescribe the
good practices in the field.

Goal to create international
standards that should be
followed by the
practitioners in the field

S2.1

 Need to protect and make profit
from the intellectual
property in the produced
standards

S2.2

Tool

provider

company

Company that creates
tools for manufacturing
safety critical systems or
to support assessment of
these systems

Goal to create competitive tools
that support the
manufacturers and
assessors in their goals

T1.1

 Need to provide a tool interface
to a platform when (1) this
platform clearly has an
added value for
manufacturers and
assessors in achieving

T1.2

High-Level Requirements D2.2

FP7 project # 289011 Page 88 of 134

their goals and (2) is
technically feasible to
create such an interface

High-Level Requirements D2.2

FP7 project # 289011 Page 89 of 134

9 Appendix: Introduction to Use Case Diagrams

9.1 Introduction

Use cases emerged from the object-oriented development world. They describe the software from the
ǳǎŜǊΩǎ Ǉƻƛƴǘ ƻŦ ǾƛŜǿΦ tǊƻƧŜŎǘǎ ǘƘŀǘ Ŧƻƭƭƻǿ ŀƴȅ ŘŜǾŜƭƻǇƳŜƴǘ ŀǇǇǊƻŀŎƘ Ŏŀƴ ǳǎŜ ǘhem because the user does
not care how the software is built, he/she cares how to interact with it. Use cases are at the center of the
widely used Unified Software Development Process [6].

Use cases capture the typical interactions between the users of a system and the system itself, providing a
narrative of how a system is used [6].

In this document we prescribe a method including tips and tricks to capture use cases. We start by
answering the question why use cases are useful; we continue with definition of use cases, followed by a
number of steps and tips and tricks when writing use cases. Finally, we end with our conclusions. This
document also contains appendices with a use case scenario template, a number of examples from
literature, and a literature reference list.

9.2 Why are use cases useful?

Use cases are a valuable means to help understand the functional requirements of a system [6]. The power
of the use-case approach comes from its task-centric and user-centric perspective. Use cases create a
clearer expectation of what users can do with the new system than if you take a function-centric approach.
The customer representatives on several Internet development projects found that use cases clarified their
notions of what visitors to their Web sites should be able to do. Use cases help analysts and developers
understand both the user's business and the application domain. Carefully thinking through the actor-
system dialog sequences can reveal ambiguity and vagueness early in the development process, as does
generating test cases from the use cases [4].

Rather than expecting use cases to contain 100 percent of the system's functionality, use cases help
analysts to discover the functional requirements. That is, the use cases become a tool rather than being an
end unto themselves. Users can review the use cases to validate whether a system that implemented the
use cases meets their needs. The analyst can study each use case and derive the functional requirements
the developer must implement to realize the use case in software [5].

Use cases should be written before the functional requirements. Use cases represent requirements at a
higher level of abstraction than do the detailed functional requirements. Initially one should focus on
understanding the user's goals so that requirements engineers can see how users might use the product to
achieve those goals. From that information, the analyst can derive the necessary functionality that must be
implemented so that the users can perform those use cases and achieve their goals [5].

The use-case approach helps with requirements prioritization. The highest priority functional requirements
are those that originated in the top priority use cases. A use case could have high priority for several
reasons [4]:

1. It describes one of the core business processes that the system enables.

High-Level Requirements D2.2

FP7 project # 289011 Page 90 of 134

2. Many users will use it frequently.
3. A favored user class requested it.
4. It provides a capability that's required for regulatory compliance.
5. Other system functions depend on its presence.

There are technical benefits, too. The use-case perspective reveals some of the important domain objects
and their responsibilities to each other. Developers using object-oriented design methods can turn use
cases into object models such as class and sequence diagrams. (Remember, though, use cases are by no
means restricted to object-oriented development projects.) As the business processes change over time,
the tasks that are embodied in specific use cases will change. By tracing functional requirements, designs,
code, and tests back to their parent use casesτthe voice of the customerτit will be easier to cascade
those business-process changes throughout the entire system [4].

9.3 Definition

! ΨǳǎŜ ŎŀǎŜΩ ŘŜǎŎǊƛōŜǎ ŀ ǎǇŜŎƛŦƛŎ ŎŀǎŜ Ƙƻǿ ŀ ǎȅǎǘŜƳ Ŏŀƴ ōŜ ǳǎŜŘΦ ¢ƘŜ ǘŜǊƳ ƛǎ ŎƻƛƴŜŘ ōȅ LǾŀǊ WŀŎƻōǎƻƴ ŀŦǘŜǊ
ǊŜƧŜŎǘƛƴƎ ǘƘŜ ǘŜǊƳǎ ΨǳǎŀƎŜ ǎŎŜƴŀǊƛƻΩ ŀƴŘ ΨǳǎŀƎŜ ŎŀǎŜΩ ŀǎ ǎǳƛǘŀōƭŜ ŎŀƴŘƛŘŀǘŜǎΦ 9ŀŎƘ ǳǎŜ Ŏase describes how
the actor will interact with the system to achieve a specific goal [7].

A use case captures a relation between the stakeholders of a system about its behavior. The use case
ŘŜǎŎǊƛōŜǎ ǘƘŜ ǎȅǎǘŜƳΩǎ ōŜƘŀǾƛƻǊ ǳnder various conditions as it responds to a request from one of the
stakeholders, called the primary actor. The primary actor initiates an interaction with the system to
accomplish some goal. The system responds, protecting the interests of all the stakeholders. Different
sequences of behavior, or scenarios, can unfold, depending on the particular requests made and conditions
surrounding the requests. The use case collects together those different scenarios [7].

In use caseςspeak, the users are referred to as actors. An actor is a role that a user plays with respect to
the system. Actors might include customer, customer service rep, sales manager, and product analyst.
Actors carry out use cases. A single actor may perform many use cases; conversely, a use case may have
several actors performing it. Usually, you have many customers; so many people can be the customer
actor. Also, one person may act as more than one actor, such as a sales manager who does customer
service rep tasks. [6]

Important to note is that an actor doesn't have to be human. If the system performs a service for another
computer system, that other system is an actor [6].

¢ƘŜ ǘŜǊƳ ΨŀŎǘƻǊΩ ƛǎ ƴƻǘ ǊŜŀƭƭȅ the right term; role would be much better. Apparently, there was a
mistranslation from Swedish, and actor is the term the use case community uses [6].

Summarizing, the three important concepts in use cases are:
1. Actor (the role of the user)
2. The goal of the actor
3. The system (the software system)

Use cases are represented in diagrams and scenarios. This is explained in the following sections.

High-Level Requirements D2.2

FP7 project # 289011 Page 91 of 134

9.3.1 Diagrams

Use-case diagrams provide a high-level visual representation of the user requirements. The notation that is
commonly used is that of the Unified Modeling Language (UML). Use cases are well known as an important
part of the UML. However, the surprise is that in many ways, the definition of use cases in the UML is
rather sparse. Nothing in the UML describes how you should capture the content of a use case. What the
UML describes is a use case diagram, which shows how use cases relate to each other. But almost all the
value of use cases lies in the content, and the diagram is of rather limited value [6].

A vast number of modellƛƴƎ ǘƻƻƭǎ ǎǳǇǇƻǊǘ όƻƴŜ ƻŦ ǘƘŜ ŘƛŀƭŜŎǘǎ ƻŦύ ¦a[Φ ¢ƘŜǊŜ ƛǎ ŦƻǊ ŜȄŀƳǇƭŜ L.aΩǎ wŀǘƛƻƴŀƭ
wƻǎŜΣ aƛŎǊƻǎƻŦǘΩǎ ±ƛǎƛƻΣ ōǳǘ ŀƭǎƻ ǘƻƻƭǎ ǘŀǊƎŜǘŜŘ ŦƻǊ ǘƘŜ 5ŜƭǇƘƛ ƳŀǊƪŜǘ ƭƛƪŜ aƻŘŜƭaŀƪŜǊ όƳŀŘŜ ōȅ
ModelMaker Tools). All of these tools support creating use case diagrams, few of them support writing
scenarios and even less offer complete checks to verify the diagrams or even the scenarios.

Figure 16 shows a partial use-case diagram for the Chemical Tracking System, using the UML notation [4].
The box represents the system boundary. Lines from each actor (stick figure) connect to the use cases
(ovals) with which the actor interacts.

In the use-case diagram, the box separates some top-level internals of the systemτthe use casesτfrom
the external actors. The context diagram also depicts objects that lie outside the system, but it provides no
visibility into the system internals [4].

High-Level Requirements D2.2

FP7 project # 289011 Page 92 of 134

Figure 16: Partial use-case diagram for the Chemical Tracking System

When use case diagrams are defined they should contain only the essence. An essential use case can be
defined as "...a simplified, generalized, abstract, technology-free and implementation-independent
description of one task or interaction...that embodies the purpose or intentions underlying the
interaction." That is, the focus should be on the goal the user is trying to accomplish and the system's
responsibilities in meeting that goal. Essential use cases are at a higher level of abstraction than concrete
use cases, which discuss specific actions the user takes to interact with the system. To illustrate the
difference, consider the following two ways to describe how a user might initiate a use case to request a
chemical:

Concrete but not essential: Enter the chemical ID number.

Essential: Specify the desired chemical.

The phrasing at the essential level allows many ways to accomplish the user's intention of indicating the
chemical to be requested: enter a chemical ID number, import a chemical structure from a file, draw the
structure on the screen with the mouse, select a chemical from a list, and others. Proceeding too quickly
into specific interaction details begins to constrain the thinking of the use-case workshop participants. The

High-Level Requirements D2.2

FP7 project # 289011 Page 93 of 134

independence from implementation also makes essential use cases more reusable than concrete use
cases. [4]

Also in a Ticket Vending Machine example a use case diagram can be depicted (See Figure 17). This figure
states that the customer can buy a ticket and that the maintenance engineer has four possible uses of the
system.

Figure 17: Use case diagram of a ticket vending machine

Note that the use case diagrams can have multiple levels. In the case of a ticket vending machine, the use
ŎŀǎŜ Ψ.ǳȅ ǘƛŎƪŜǘΩ Ƴŀȅ ōŜ ŦǳǊǘƘŜǊ ǎǇŜŎƛŦƛŜŘ ƛƴǘƻ ƳǳƭǘƛǇƭŜ ǳǎŜ ŎŀǎŜǎΣ ƭƛƪŜ Ψ.ǳȅ ǎƛƴƎƭŜ-ǘǊƛǇ ǘƛŎƪŜǘΩΣ Ψ.uy day-
ǊŜǘǳǊƴ ǘƛŎƪŜǘΩΣ Ψ.ǳȅ ǊƻǳƴŘ-ǘǊƛǇ ǘƛŎƪŜǘΩΣ ŜǘŎΦ IƻǿŜǾŜǊΣ ƳǳƭǘƛǇƭŜ ƭŜǾŜƭǎ ǎƘƻǳƭŘ ōŜ ŀǾƻƛŘŜŘΣ ƛŦ ǇƻǎǎƛōƭŜΦ
Therefore, in the example these use cases are all captured by the same scenario.

9.4 Steps to create use case diagrams

9.4.1 Introduction

Rather than describe use cases head-on, it is easier to approach them in a more natural and narrative way
and start describing a user scenario. A user scenario is a sequence of steps describing an interaction
between a user and a system. So if we have a Web-based on-line store, we might have a Buy a Product
scenario that would say this:

The customer browses the catalogue and adds desired items to the shopping basket. When the customer
wishes to pay, the customer describes the shipping and credit card information and confirms the sale. The
system checks the authorization on the credit card and confirms the sale both immediately and with a
follow-up e-mail.

This scenario is one thing that can happen. However, the credit card authorization might fail, and this
would be a separate scenario. In another case, you may have a regular customer for whom you don't need
to capture the shipping and credit card information, and this is a third scenario.

High-Level Requirements D2.2

FP7 project # 289011 Page 94 of 134

All these scenarios are different yet similar. The essence of their similarity is that in all these three
scenarios, the user has the same goal: to buy a product. The user doesn't always succeed, but the goal
remains. This user goal is the key to use cases: A use case is a set of scenarios tied together by a common
user goal. [6]

9.4.2 Steps

The steps that help you to identify and write the use case diagrams effectively (Taken from [7]) are
indicated below. Note that you have to work breadth first, not depth first; so, from lower precision to
higher precision. This will help you manage your energy, that is, keep track of what you do and plan to do.

1. System boundaries. The boundaries of the system defined in a context diagram or in/out list.
2. Primary actors. Collect all the primary actors (users and their different roles they can have according

to the system) as the first step in getting your arms around the entire system for a brief while. It is nice
to have the whole system in one place. Brainstorm these actors to help you get the most goals on the
first round.

3. Goals. Listing all the goals of all the primary actors is perhaps the last chance you will have to capture
the entire system in one view. Getting this list as complete and correct as you can is essential. The next
steps will involve more (much) more work. Review the list with the users, sponsors, and developers, so
they all agree on the priority and understand the system.

4. Summary level use cases. Write the outermost (that is, highest abstraction level) summary level use
cases covering all the (known) actors and their goals. After that reconsider & revise the strategic use
cases. Add, subtract, merge goals.

5. Elaborate each use case. Pick a use case to expand or write a narrative to get acquainted with writing
use cases. Fill in the stakeholders, interests, and preconditions. Continue with the main success
scenario and check it with the goals and interests.

9.5 Appendix conclusion

This appendix ƛǎ ŀ ŎƻƳǇƛƭŀǘƛƻƴ ƻŦ ōŜǎǘ ŀǇǇǊƻŀŎƘŜǎ ōƻǘƘ ŦǊƻƳ ƭƛǘŜǊŀǘǳǊŜ ŀǎ ǿŜƭƭ ŀǎ [ŀvǳ{ƻΩǎ experience. It
summarizes the focus points how to write effective use cases. Reading this appendix supports learning how
to write effective use cases and how to check them whether they are built in the right way.

High-Level Requirements D2.2

FP7 project # 289011 Page 95 of 134

10 Appendix: High-Level Requirement Good Practices

From [3] we learn that user requirement documents should include:

1. Functional requirements must be described. Functional requirements describe the functionality of
the system from the perspective of the user. This can be done in plain text or in the form of use-
cases (see below).

2. Non-functional requirements. These are also called quality requirements. It is a set of different

types of quality measures, as defined in the ISO/IEC 9126 standard for quality characteristics.

3. Glossary. Many types of entities play a role in the environment processes but only those that have

to be represented in the system are collected. Not the individual entities, but only the types or
classes to which they belong are listed (so not "client Johnson", but only "client"). The object
description can be quite informal in the form of a glossary (terms and definitions), or more
advanced in the form of a data dictionary or object model (see below).

4. Data dictionary or object model. A data dictionary is a set of metadata that contains definitions

and representations of data elements. It includes semantics for data elements. The semantic
components focus on creating precise meaning of data elements. Data dictionaries are more
precise than glossaries because they frequently have one or more representations of how data is
structured. Data dictionaries can be completed with data or object models that also include
complex relationships between data elements or objects.

5. Use-case diagrams (without scenarios). A use-case is a named "piece of functionality" as seen from

the perspective of an actor. Note that also the not-permitted ones, the mis-use cases, can be
defined as well. These can help identify security leaks for example.

6. Flowcharts of processes. A flowchart is a schematic representation of a process. Generally the start

point, end points, inputs, outputs, possible paths and the decisions that lead to these possible
paths are included.

7. Behavioural properties. General behavioural properties are e.g. properties that express that

certain conditions may never occur or that certain conditions should always hold. Usually these
properties have a temporal aspect and therefore it is possible to express them in temporal logic,
although a translation in natural language is essential for most stakeholders.

And each requirement needs to be:

8. Uniquely identifiable; it must have a unique identifier. Preferably the requirements are ordered
and numbered. Functional and non-functional requirements can be grouped together using the
same number if they are preceded by a different letter code.

9. !ǘƻƳƛŎΤ ŜŀŎƘ ǊŜǉǳƛǊŜƳŜƴǘ Ƴǳǎǘ ŀŘŘǊŜǎǎ ƻƴƭȅ ƻƴŜ ƛǎƻƭŀǘŜŘ ǎǳōƧŜŎǘΦ ²ƻǊŘǎ ƭƛƪŜ ΨŀƴŘΩΣ ǘƘŀǘ

concatenate different functionality must be avoided.

10. Unambiguous. It is clear what the requirement means. No term in the requirement has an
alternate meaning that can be misunderstood by any of the stakeholders. It is clear where the
emphasis in the requirement is. Possible ambiguities are unambiguously explained either in the
glossary or in the derived, lower-level, requirements on function- or component-level. Note that
ambiguity in high-level requirements is accepted on platform and feature-level.

High-Level Requirements D2.2

FP7 project # 289011 Page 96 of 134

11. Free from implementation details. Functional requirements do not constrain the technical solution.

Any design and development constraints are part of the non-functional requirements. The
ŦǳƴŎǘƛƻƴŀƭ ǊŜǉǳƛǊŜƳŜƴǘǎ ǎǇŜŎƛŦȅ ǘƘŜ ΨǿƘŀǘΩΣ ƴƻǘ ǘƘŜ ΨƘƻǿΩΦ

12. Traceable. Each functional requirement should be derived from at least one business requirement

and must have a relation with either functionality in the FSD or use cases.

13. Testable/Verifiable: The requirement can be objectively shown to hold. The requirement is
expressed in precise and quantitative terms. Note that it is acceptable that high-level requirements
(platform- and feature-level) can be untestable and/or unverifiable, as long as the derived
requirements, the lower-level requirements dependent on this requirement, are.

14. Prioritized. It must have a priority. There must be more than one priority level (for example must-

have, should-have, could-ƘŀǾŜΣ ǿƻƴΩǘ ƘŀǾŜ) and priority levels should be balanced; that is, each
level should be used as frequent as the others; for example, if all requirements are indicated with
high priority, levels are not balanced.

Furthermore, requirements need to conform to the following rules:
15. No two requirements or use-case diagrams contradict each other. It is not the case that one

requirement describes property P and another requirement describes property Not P. It is not the
case that one use-case describes an order of steps and another use-case describes a different
order of steps. Etc.

16. Ambiguity is explained in the glossary or detailed in the refined requirements. Each ambiguous or

unclear term from the requirements is contained in the glossary or in a (set of) refined
requirement(s).

17. The definitions in the glossary are non-cyclic. There is no definition d in the glossary, which refers

to other definitions, etc, until the definition d is referred to.

18. A use-case is well composed. A use-case describes at least pre-conditions, post-conditions, normal

flow, and alternate flows (including exceptions).

19. Use-case diagrams correspond to use-case text. If diagrams are drawn in the use-case description
to show the steps in the use-case, the descriptions and order of the steps is the same in both the
text and the diagrams.

20. The use-cases or functional requirements detail the environment description. The use-cases or

functional requirements detail the environment description in the context description (no
contradictions). Each step in a business process that involves the system has been included in the
requirements. Each task that the system should fulfil for its environment has been included in the
requirements. All actors of the context description have been included in the requirements.

21. No useless actors and use-cases. Each use-case is involved with at least one actor and each actor is

involved with at least one use-case.

22. No useless objects and all objects specified. Each object is mentioned in the requirements and all

objects mentioned in the requirements are contained in the object model.

High-Level Requirements D2.2

FP7 project # 289011 Page 97 of 134

23. Life-cycle coverage of the objects. For each object the create-, read-, update- and delete
operations are covered in the user requirements or not applicable.

24. The requirements do not contradict the behavioural properties. None of the behavioural

properties is rendered impossible by the requirements.

25. The functional and non-functional requirements do not contradict. The use-case or functional

requirements do not render the non-functional requirements impossible.

High-Level Requirements D2.2

FP7 project # 289011 Page 98 of 134

11 Appendix: Cross-application domain use cases: RTOS
OPENCOM

11.1 Purpose of Document

This document is a legacy description of a use case that has been developed in the beginning of the
OPENCOSS project. It has not been updated, but just shows the intermediate steps that have been taken to
come to the high-level requirements.

The intention of this document was to provide use cases for the OPENCOSS Platform. These use cases
have been derived from consideration of a potentially reusable component ς the OpenCom RTOS ς which
has been developed by Altreonic (See [18][19]). The OpenCom RTOS was developed using formal
methods, so, from the OPENCOSS point of view, some potentially reusable assurance evidence artefacts do
exist, in the form of the formal verification of the RTOS. The use cases presented here focus on how the
OPENCOSS Platform can support reuse of this component and its associated assurance evidence both
within and across safety-critical domains. Although they are intended to highlight some of the issues
inherent in the assurance of real-time systems, it should be stressed that the use cases are conceptual.
They are expressed at a very general level, and do not derive a priori from any known use of the OpenCom
RTOS itself.

11.2 Background: The OpenCom RTOS

The OpenComRTOS [18] [19] was developed to support real-time operations in embedded systems in
safety-ŎǊƛǘƛŎŀƭ ŘƻƳŀƛƴǎΦ {ǳŎƘ ǎȅǎǘŜƳǎ ŀǊŜ ǘȅǇƛŎŀƭƭȅ ΨƘŀǊŘΩ ǊŜŀƭ-time systems, in that missing a task deadline
can result in a total system failure. Conventional RTOS are either designed for deployment on a single
processor or in systems characterised by shared memory resources. The OpenComRTOS, however, is
explicitly designed to exploit modern distributed processor architectures: it is developed on a network-
centric model, which assumes that each processor has a local memory and that the supporting hardware
permits and secures communication between the distributed memory resources (See [18], page 15), while
preventing this where necessary (i.e. maintaining partitioning between applications as required). The
OpenComRTOS supports concurrent programming in this distributed environment, in such a way as to be
transparent to the application developer: the system handles the mapping between of tasks and entities
and deals with routing and system-level communication so that application source code can remain
independent of the topology of the target system (See [18], page 33). The RTOS is developed in ANSI-C
and is thus highly portable: it is scalable to a range of target systems, from very small systems with a single
microprocessor to widely- distributed networks comprising large numbers of distributed processing nodes
[18]. OpenCom RTOS supports the reuse of applications across varied platforms, by recompiling and
remapping the source code without the need to modify the code itself, independently of the underlying
processor architecture, from 8-bit to 64-bit CPUs (See [18], page 32). The RTOS can be extended with the
addition of application-specific services and entities without the need for redevelopment of the RTOS
kernel or the development of an additional middleware layer (See [18], page 33).

11.3 Use Case Documentation

11.3.1 Context

The OPENCOSS project seeks to provide an affordable approach for the certification and recertification of
safety-critical systems and, in particular, to support the reuse of safety arguments and evidence relating to

High-Level Requirements D2.2

FP7 project # 289011 Page 99 of 134

system components across the railway, automotive and aerospace domains. This approach will be
supported by the OPENCOSS Platform, which will provide tools and processes to manage certification
information and perform safety assurance activities [1].

The use cases presented below are intended to reflect a particular viewpoint: that of an end-ǳǎŜǊΩǎ
interaction with the OPENCOSS Platform, as he works through a series of scenarios representing
deployment of the OpenCom RTOS in a variety of contexts. It should be noted that much of the theory and
many of the artefacts underpinning the OPENCOSS approach (for example the CCL, or the mechanics of
modular certification) are likely to be invisible to the end-user at this level of abstraction. The use cases
do, however, reveal some issues and constraints on the approach to be adopted in OPENCOSS.

11.3.2 General Use Cases

In this section, we capture general use cases for common user interactions with the OPENCOSS Platform,
such as uploading, viewing and editing documents. These general use cases are extended in the more
detailed scenarios listed in the following three sections. Since the functionality in these general use cases
is accessed only through more detailed extension cases, the scenario does not begin with a general
ΨŘƻŎǳƳŜƴǘ ƳŀƴŀƎŜƳŜƴǘΩ ǾƛŜǿ ƻŦ the interface, but instead with a specific prompt.

These general use cases are modellŜŘ ǳǎƛƴƎ ŀƴ ŀōǎǘǊŀŎǘ Ψ¦ǎŜǊΩ ŎƭŀǎǎΦ {ƛƴŎŜ ǳǎŜǊǎ ǿƛǘƘ ŘƛŦŦŜǊƛƴƎ ŀŎŎŜǎǎ ǊƛƎƘǘǎ
ŀǊŜ ǊŜǉǳƛǊŜŘΣ ǘƘƛǎ Ŏƭŀǎǎ ƛǎ ŦǳǊǘƘŜǊ ǎǇŜŎƛŀƭƛȊŜŘ ƛƴ ǘƘŜ ŦƻƭƭƻǿƛƴƎ ǎŜŎǘƛƻƴǎΦ ²ƘŜǊŜ Ψ{ȅǎǘŜƳΩ ŀǇpears as an actor
in a use case in this document, the reference is to the OPENCOSS Platform.

UC-01: Upload Document

Context: A User has prepared a version of some project artefact, and wishes to
upload it to the OPENCOSS Platform.

Actors: User (primary)

Preconditions: The User has a copy of the document he wishes to upload stored on his
local workspace. The document is in a form which can be stored by the
OPENCOSS Platform. The OPENCOSS Platform is running, and the User is
logged into the system.

Assumptions: 1. User has the permissions required to upload a document to the
OPENCOSS Platform.
2. The OPENCOSS Platform can store a range of document formats.
оΦ ¢ƘŜ ht9b/h{{ tƭŀǘŦƻǊƳ ǿƛƭƭ ǎǘƻǊŜ ŘƻŎǳƳŜƴǘǎ ŀǎ ΨŜǾƛŘŜƴŎŜ ŀǊǘŜŦŀŎǘǎΩΣ
ΨǊŜǉǳƛǊŜƳŜƴǘǎ ŀǊǘŜŦŀŎǘǎΩ ƻǊ ΨŀǊƎǳƳŜƴǘ ŀǊǘŜŦŀŎǘǎΩΦ

Main success
scenario:

1. {ȅǎǘŜƳ ƻŦŦŜǊǎ ΨǳǇƭƻŀŘ ŘƻŎǳƳŜƴǘΩ ƻǇǘƛƻƴΦ
2. ¦ǎŜǊ ǎŜƭŜŎǘǎ ΨǳǇƭƻŀŘ ŘƻŎǳƳŜƴǘΩ
3. System presents index of local files
4. User selects relevant file for upload
5. System uploads document
6. System displays index view to confirm upload.

Post-conditions: The document is uploaded to the System, and marked with version
control information.

Alternative
Scenarios:

UC-01.1: Upload Draft Document (extends UC-01 Upload Document)
Extension Point: 3
оΦм {ȅǎǘŜƳ ƻŦŦŜǊǎ ŀ ŎƘƻƛŎŜ ƻŦ ΨǳǇƭƻŀŘ ŘǊŀŦǘ ŘƻŎǳƳŜƴǘΩ ŀƴŘ ΨǳǇƭƻŀŘ
ōŀǎŜƭƛƴŜŘ ǾŜǊǎƛƻƴ ƻŦ ŘƻŎǳƳŜƴǘΩ
оΦн ¦ǎŜǊ ǎŜƭŜŎǘǎ ΨǳǇƭƻŀŘ ŘǊŀŦǘ ŘƻŎǳƳŜƴǘΩ
3.3 System uploads document and marks it with date and time

High-Level Requirements D2.2

FP7 project # 289011 Page 100 of 134

ƛƴŦƻǊƳŀǘƛƻƴΣ ŀƭǎƻ ƳŀǊƪƛƴƎ ƛǘ ΨŘǊŀŦǘΩΦ

UC-01.2 Upload Baselined1 Document (extends UC-01 Upload
Document) Extension Point: 3
оΦм {ȅǎǘŜƳ ƻŦŦŜǊǎ ŀ ŎƘƻƛŎŜ ƻŦ ΨǳǇƭƻŀŘ ŘǊŀŦǘ ŘƻŎǳƳŜƴǘΩ ŀƴŘ ΨǳǇƭƻŀŘ
ōŀǎŜƭƛƴŜŘ ǾŜǊǎƛƻƴ ƻŦ ŘƻŎǳƳŜƴǘΩ
оΦн ¦ǎŜǊ ǎŜƭŜŎǘǎ ΨǳǇƭƻŀŘ ōŀǎŜƭƛƴŜŘ ǾŜǊǎƛƻƴ ƻŦ ŘƻŎǳƳŜƴǘΩ
3.3 System uploads document and marks it with change control
information (date, time and version).

Exceptions: 3.1 Document not found. System displays an error message. Return to
step 1.
5.1 Upload fails. System displays an error message. Return to step 3.

UC-02: Replace Existing Document (extends UC-01: Upload Document)

Context: A User updated some project artefact, and wishes to upload it to the
OPENCOSS Platform, replacing an existing version.

Actors: User (primary)

Preconditions: The user has a copy of the document he wishes to upload stored on his
local workspace. The document is in a form which can be stored by the
OPENCOSS Platform. The OPENCOSS Platform is running, and the User is
logged into the system.

Assumptions: 1. User has the permissions required to upload a document to the
OPENCOSS Platform.
2. The OPENCOSS Platform can store a range of document formats.
оΦ ¢ƘŜ ht9b/h{{ tƭŀǘŦƻǊƳ ǿƛƭƭ ǎǘƻǊŜ ŘƻŎǳƳŜƴǘǎ ŀǎ ΨŜǾƛŘŜƴŎŜ ŀǊǘŜŦŀŎǘǎΩΣ
ΨǊŜǉǳƛǊŜƳŜƴǘǎ ŀǊǘŜŦŀŎǘǎΩ ƻǊ ΨŀǊƎǳƳŜƴǘ ŀǊǘŜŦŀŎǘǎΩΦ
4. The OPENCOSS Platform will store all previous versions of draft or
baselined documents.

Main success
scenario:

1. {ȅǎǘŜƳ ƻŦŦŜǊǎ ΨǳǇƭƻŀŘ ŘƻŎǳƳŜƴǘΩ ƻǇǘƛƻƴΦ
2. ¦ǎŜǊ ǎŜƭŜŎǘǎ ΨǳǇƭƻŀŘ ŘƻŎǳƳŜƴǘΩ
3. {ȅǎǘŜƳ ƻŦŦŜǊǎ ƻǇǘƛƻƴǎ ƻŦ ΨǳǇƭƻŀŘ ǊŜǉǳƛǊŜƳŜƴǘǎ ŀǊǘŜŦŀŎǘΩΣ ΨǳǇƭƻŀŘ
ŜǾƛŘŜƴŎŜ ŀǊǘŜŦŀŎǘΩ ŀƴŘ ΨǳǇƭƻŀŘ ŀǊƎǳƳŜƴǘ ŀǊǘŜŦŀŎǘΩ

4. ¦ǎŜǊ ǎŜƭŜŎǘǎ ΨǳǇƭƻŀŘ ŜǾƛŘŜƴŎŜ ŀǊǘŜŦŀŎǘΩ
5. System presents index of local files
6. User selects relevant file for upload
7. System checks for previous versions of the file
8. System displays a message to the effect that a previous version
ŜȄƛǎǘǎ όƎƛǾƛƴƎ Řŀǘŀ ŀƴŘ ǘƛƳŜ ƛƴŦƻǊƳŀǘƛƻƴύΣ ŀƴŘ ŘƛǎǇƭŀȅǎ ŀ Ψreplace
ŦƛƭŜΚΩ ƳŜǎǎŀƎŜΦ

9. User confirms desire to replace file.
10. {ȅǎǘŜƳ ƻŦŦŜǊǎ ŀ ŎƘƻƛŎŜ ōŜǘǿŜŜƴ ΨǳǇƭƻŀŘ ŘǊŀŦǘ ŘƻŎǳƳŜƴǘΩ ŀƴŘ ΨǳǇƭƻŀŘ
ōŀǎŜƭƛƴŜŘ ŘƻŎǳƳŜƴǘΩ

11. ¦ǎŜǊ ǎŜƭŜŎǘǎ ΨǳǇƭƻŀŘ ōŀǎŜƭƛƴŜŘ ŘƻŎǳƳŜƴǘΩ
12. System uploads document, and marks it with configuration control

1 We are using the word óbaselinedô rather loosely here. We want to make a distinction between
an artefact which is under configuration control and one which is not.

High-Level Requirements D2.2

FP7 project # 289011 Page 101 of 134

information (date, time and version).
13. {ȅǎǘŜƳ ŀǊŎƘƛǾŜǎ ǇǊŜǾƛƻǳǎ ǾŜǊǎƛƻƴ ƻŦ ŘƻŎǳƳŜƴǘ ƛƴ ΨŜǾƛŘŜƴŎŜ ŀǊǘŜŦŀŎǘ
ŀǊŎƘƛǾŜΩ

14. System displays index view to confirm upload.

Post-conditions: The document is uploaded to the System, and marked with version
control information. The previous version of the file is stored in an
appropriate archive.

Alternative
Scenarios:

пΦм ¦ǎŜǊ ǎŜƭŜŎǘǎ ΨǳǇƭƻŀŘ ǊŜǉǳƛǊŜƳŜƴǘǎ ŀǊǘŜŦŀŎǘΩ
Ą моΦм {ȅǎǘŜƳ ŀǊŎƘƛǾŜǎ ǇǊŜǾƛƻǳǎ ŘƻŎǳƳŜƴǘ ƛƴ ΨǊŜǉǳƛǊŜƳŜƴǘǎ ŀǊǘŜŦŀŎǘ
ŀǊŎƘƛǾŜΩ

пΦн ¦ǎŜǊ ǎŜƭŜŎǘǎ ΨǳǇƭƻŀŘ ŀǊƎǳƳŜƴǘ ŀǊǘŜŦŀŎǘΩ
Ą моΦн {ȅǎǘŜƳ ŀǊŎƘƛǾŜǎ ǇǊŜǾƛƻǳǎ ŘƻŎǳƳŜƴǘ ƛƴ ΨŀǊƎǳƳŜƴǘ ŀǊǘŜŦŀŎǘ
ŀǊŎƘƛǾŜΩ

ммΦм ¦ǎŜǊ ǎŜƭŜŎǘǎ ΨǳǇƭƻŀŘ ŘǊŀŦǘ ŘƻŎǳƳŜƴǘΩ
12.1 System uploads document, marks it with data and time information
ŀƴŘ ŀƭǎƻ ƳŀǊƪǎ ƛǘ ŀǎ ΨŘǊŀŦǘΩ

Exceptions: 6.1 Document not found. System displays an error message. Return to
step 1.
7.1 Previous versions not found. No system action required.
12.1 Upload fails. System displays an error message. Return to step 5.

UC-03: View Document

Context: A User wishes to call up a document previously stored on the OPENCOSS
Platform

Actors: User (primary)

Preconditions: The document has previously been uploaded to the OPENCOSS Platform.
The OPENCOSS Platform is running, and the User is logged into the
system.

Assumptions: 1. The User has the necessary privileges to view the document.

Main success
scenario:

1. {ȅǎǘŜƳ ƻŦŦŜǊǎ ΨǾƛŜǿ ŘƻŎǳƳŜƴǘΩ ƻǇǘƛƻƴ
2. ¦ǎŜǊ ǎŜƭŜŎǘǎ ΨǾƛŜǿ ŘƻŎǳƳŜƴǘΩ
3. System displays index of relevant directory (obviously, this will be

clear in the context of the specialized usage scenarios)
4. User selects document
5. System displays the relevant document

Post-conditions: The User is able to view the document.

Alternative
Scenarios:

Exceptions: 4.1 Document not found. An error message is displayed. Return to step
1.

High-Level Requirements D2.2

FP7 project # 289011 Page 102 of 134

UC-04: Edit Document (uses UC-03: View Document; uses UC-02 Replace Existing
Document)

Context: A User wishes to edit a document previously stored on the OPENCOSS
Platform.

Actors: User (primary)

Preconditions: The document has previously been uploaded to the OPENCOSS Platform.
The OPENCOSS Platform is running, and the User is logged into the
system.

Assumptions: 1. The User has the necessary privileges to edit the document.
2. The System provides for local storage of copies of artefacts, so that
uǎŜǊǎ Ŏŀƴ ƳŀƪŜ ΨŘǊŀŦǘΩ ŎƘŀƴƎŜǎΣ ōŜŦƻǊŜ ǘƘŜȅ ǳǇƭƻŀŘ ŀ ǾŜǊǎƛƻƴ-controlled
copy to the system.
3. Past versions of artefacts are retained by the System, and are
ŀŎŎŜǎǎƛōƭŜ ǘƻ ǳǎŜǊǎ ǳƴŘŜǊ ŀ ΨǾƛŜǿ Ǉŀǎǘ ŀǊǘŜŦŀŎǘǎ ƻŦ ǘƘƛǎ ǘȅǇŜΩ ǾƛŜǿ όǎŜŜ
Use Case UC-02 above).

Main success
scenario:

1. {ȅǎǘŜƳ ƻŦŦŜǊǎ ΨŜŘƛǘ ŘƻŎǳƳŜƴǘΩ ƻǇǘƛƻƴ
2. ¦ǎŜǊ ǎŜƭŜŎǘǎ ΨŜŘƛǘ ŘƻŎǳƳŜƴǘΩ
3. System displays index of relevant artefacts
4. System prompts User to select an artefact to update
5. User indicates selection of relevant artefact
6. System offers User the relevant artefact in an editable form and

locks the centrally-stored copy to prevent other users from making
changes.

7. User downloads a copy of the artefact to his local workspace.
8. User makes changes to artefact and saves changes.
9. System offers a choice of options ς ΨǎǘƻǊŜ ŎƘŀƴƎŜǎ ƻƴƭȅ ƛƴ ƭƻŎŀƭ ŎƻǇȅΩΣ
ΨǳǇƭƻŀŘ ŎƘŀƴƎŜŘ ǾŜǊǎƛƻƴΩ

10. ¦ǎŜǊ ŎƘƻƻǎŜǎ ΨǳǇƭƻŀŘ ŎƘŀƴƎŜŘ ǾŜǊǎƛƻƴΩ
11. System uploads changed version, and marks it with version control

information (date, time, current).
12. The System retains previous versions of the file.
13. The System unlocks the file, so that other qualified users can make

changes.

Post-conditions: An updated document is stored on the System, available for all users to
view and for eligible users to edit. This file is under version control.
Previous versions, also with version control information, are stored.

Alternative
Scenarios:

Use Case UC-04.1 Edit Local Document (extends UC-04 Edit Document)
Extension point: step 10
млΦм ¦ǎŜǊ ŎƘƻƻǎŜǎ ΨǎǘƻǊŜ ŎƘŀƴƎŜǎ ƻƴƭȅ ƛƴ ƭƻŎŀƭ ŎƻǇȅΩ
10.2 System unlocks stored version to permit editing by other qualified
users
10.3 System makes no further changes to stored version of the file.

Exceptions: 6.1 Document not found. An error message is displayed. Return to step
3.
11. Upload fails. An error message is displayed. Return to step 9.

High-Level Requirements D2.2

FP7 project # 289011 Page 103 of 134

User

Upload Document

Replace Existing

Document

«extends»

Edit Document

«uses»

View Document

«uses»

OPENCOSS Platform

Figure 18: General use case diagram

11.3.3 Use Cases arising from situations in which the OpenCom RTOS is deployed
in a single system

In this section, we detail Use Cases relating to a scenario in which the OpenCom RTOS is deployed as the
RTOS to be used for engine control software in a newly-developed conventional automotive vehicle. This
is the simplest certification scenario for the OPENCOSS Platform: the certification evidence and argument
is assembled for the first time. Since the OpenCom RTOS is a COTS component, however, there is a need
to interrogate the relevance of the verification provided: the view and update use cases presented here
facilitate the Stakeholders in performing this work. The OPENCOSS Platform is used to manage the safety
management and certification workflow activities, and to store evidence and process artefacts and to
develop and store the safety argument, which relates evidence to safety requirements.

UC-05: View Workflow (extends UC-03 View Document)

Context: The OpenCom RTOS has been selected as the RTOS to be used for engine
control in a newly-developed conventional automotive vehicle. At the
beginning of the project, the Project Safety Manager wishes to use the
OPENCOSS Platform to manage the workflow required for safety
certification activity within the manufacturer.

Actors: Safety Manager (primary), Safety Engineers, ISA, Project Manager

User Goal in
Context:

The Safety Manager wishes to call up a workflow tailored to the process
requirements of the target certification domain.

Preconditions: The OPENCOSS Platform has been populated with information relating to
the safety process mandated by the relevant suite of Standards. The
OPENCOSS Platform is running, and the Safety Manager is logged into
the system.

Assumptions: 1. A system is certified against a defined series of standards, company
standards etc.. The process requirements from these documents will be

High-Level Requirements D2.2

FP7 project # 289011 Page 104 of 134

conflated and represented as a ΨǘŀǊƎŜǘ ŎŜǊǘƛŦƛŎŀǘƛƻƴ ŘƻƳŀƛƴΩΦ
нΦ ! ǿƻǊƪŦƭƻǿ ǿƛƭƭ ŎƻƳǇǊƛǎŜ ǎŜǾŜǊŀƭ ΨǿƻǊƪŦƭƻǿ ŀǊǘŜŦŀŎǘǎΩ ς plans, Gantt
charts, to do lists etc..

Main success
scenario:

1. Safety Manager selects Work Flow view.
2. System offers choice of options ς ΨǾƛŜǿ ŎǳǊǊŜƴǘ ǿƻǊƪŦƭƻǿΩΣ ΨǾƛŜǿ past
ǿƻǊƪŦƭƻǿΩΣ ΨǳǇŘŀǘŜ ǿƻǊƪŦƭƻǿΩΦ

3. {ŀŦŜǘȅ aŀƴŀƎŜǊ ŎƘƻƻǎŜǎ ΨǾƛŜǿ ŎǳǊǊŜƴǘ ǿƻǊƪŦƭƻǿΩ
4. System prompts Safety Manager to select relevant target

certification domain.
5. Safety Manager selects target certification domain.
6. System populates the workflow with activities required by the target

certification domain.
7. System displays index of workflow artefacts.
8. System prompts Safety Manager to choose required workflow

artefact.
9. Safety manager selects required workflow artefact.
10. System displays required workflow artefact.

Post-conditions: The Safety Manager is able to view a detailed workflow, which reflects
the process requirements from the relevant target certification domain.

Alternative
Scenarios:

UC-05.1: Share Workflow (extends UC-05: View Workflow) Extension
Point: step 5
5.1 System prompts Safety Manager as to whether he wishes to share
the workflow.
5.2 Safety Manager specifies ISA and Safety Engineers as those with
whom he wishes to share the workflow.
7.1 System displays the index of workflow artefacts for multiple users.

UC-05.2: View Past Workflow (extends UC-05: View Workflow) Extension
point: step 3
оΦм {ŀŦŜǘȅ ƳŀƴŀƎŜǊ ǎŜƭŜŎǘǎ ΨǾƛŜǿ Ǉŀǎǘ ǿƻǊƪŦƭƻǿΩ
4.1 System displays index of past workflow artefacts with version control
information
4.2 System prompts Safety Manager to select required artefact
4.3 System displays required artefact.

Exceptions: 1.1 Work flow view not found. An error message is displayed.
4.1 Target certification domain not found. An error message is displayed.
6.1 Workflow activities not found. An error message is displayed.

UC-06: Update Workflow (extends UC-05: View Workflow)

Context: The OpenCom RTOS has been selected as the RTOS to be used for engine
control in a newly-developed conventional automotive vehicle. At the
beginning of the project, the Project Safety Manager wishes to use the
OPENCOSS Platform to manage the workflow required for safety
certification activity within the manufacturer.

Actors: Safety Manager (primary)

User Goal in
Context:

The Safety Manager wishes to update the workflow to reflect recent
work, and to propagate the changes he makes.

Preconditions: The OPENCOSS Platform has been populated with information relating to
the safety process mandated by the relevant suite of Standards. The
OPENCOSS Platform is running, and the Safety Manager is logged into

High-Level Requirements D2.2

FP7 project # 289011 Page 105 of 134

the system.

Assumptions: 1. A system is certified against a defined series of standards, company
standards etc.. The process requirements from these documents will be
ŎƻƴŦƭŀǘŜŘ ŀƴŘ ǊŜǇǊŜǎŜƴǘŜŘ ŀǎ ŀ ΨǘŀǊƎŜǘ ŎŜǊǘƛŦƛŎŀǘƛƻƴ ŘƻƳŀƛƴΩΦ
2. Only certain classes of user are entitled to make changes to workflow
artefacts. The Safety Manager is such a user.
3. The system provides for local storage of copies of artefacts, so that
ǳǎŜǊǎ Ŏŀƴ ƳŀƪŜ ΨŘǊŀŦǘΩ ŎƘŀƴƎŜǎΣ ōŜŦƻǊŜ they upload a version-controlled
copy to the system.
4. Past versions of workflow artefacts are retained by the System, and
ŀǊŜ ŀŎŎŜǎǎƛōƭŜ ǘƻ ǳǎŜǊǎ ǳƴŘŜǊ ŀ ΨǾƛŜǿ Ǉŀǎǘ ǿƻǊƪŦƭƻǿǎΩ ǾƛŜǿ όǎŜŜ ¦ǎŜ /ŀǎŜ
UC-05.2 above).

Main success
scenario:

1. Safety Manager selects Work Flow view.
2. System offers choice of options ς ΨǾƛŜǿ ŎǳǊǊŜƴǘ ǿƻǊƪŦƭƻǿΩΣ ΨǾƛŜǿ Ǉŀǎǘ
ǿƻǊƪŦƭƻǿΩΣ ΨǳǇŘŀǘŜ ǿƻǊƪŦƭƻǿΩ

3. {ŀŦŜǘȅ aŀƴŀƎŜǊ ŎƘƻƻǎŜǎ ΨǳǇŘŀǘŜ ǿƻǊƪŦƭƻǿΩ
4. System displays index of recently-saved workflows
5. System prompts Safety manager to select the required workflow
6. Safety Manager selects workflow
7. System displays index of relevant workflow artefacts
8. System prompts Safety manager to select an artefact to update
9. Safety Manager indicates selection of relevant artefact
10. System offers Safety manager the relevant artefact in an editable

form and locks the centrally-stored copy to prevent other users from
making changes.

11. Safety manager downloads a copy of the artefact to his local
workspace.

12. Safety Manager makes changes to artefact and saves changes.
13. System offers a choice of options ς ΨǎǘƻǊŜ ŎƘŀƴƎŜǎ ƻƴƭȅ ƛƴ ƭƻŎŀƭ ŎƻǇȅΩΣ
ΨǳǇƭƻŀŘ ŎƘŀƴƎŜŘ ǾŜǊǎƛƻƴΩ

14. {ŀŦŜǘȅ aŀƴŀƎŜǊ ŎƘƻƻǎŜǎ ΨǳǇƭƻŀŘ ŎƘŀƴƎŜŘ ǾŜǊǎƛƻƴΩ
15. System uploads changed version, and marks it with version control

information (date, time, current).
16. The System retains previous versions of the file.
17. The System unlocks the file, so that other qualified users can make

changes.

Post-conditions: An updated workflow document is stored on the System, available for all
users to view and for eligible users to edit. This file is under version
control. Previous versions, also with version control information, are
stored.

Alternative
Scenarios:

Use Case UC-06.1 Update Local Workflow (extends UC-06 Update
Workflow) Extension point: step 14
мпΦм {ŀŦŜǘȅ aŀƴŀƎŜǊ ŎƘƻƻǎŜǎ ΨǎǘƻǊŜ ŎƘŀƴƎŜǎ ƻƴƭȅ ƛƴ ƭƻŎŀƭ ŎƻǇȅΩ
14.2 System unlocks stored version to permit editing by other qualified
users
14.3 System makes no further changes to stored version of the file.

Exceptions: 1.1 Work flow view not found. An error message is displayed.
4.1 Workflow information not found. An error message is displayed.
4.1 Workflow activities not found. An error message is displayed.

High-Level Requirements D2.2

FP7 project # 289011 Page 106 of 134

Safety Manager

Safety Engineer

ISA

Project Manager

View Workflow

Share Workflow

«extends»

View Past Workflow

«extends»

Update Workflow

«extends»

Update Local

Workflow

OPENCOSS Platform

«extends»

Figure 19: Workflow Use Cases Diagram

High-Level Requirements D2.2

FP7 project # 289011 Page 107 of 134

UC-07: Upload Safety Requirements Artefact2 (extends UC-01 Upload Document)

Context: The OpenCom RTOS has been selected as the RTOS to be used for engine
control in a newly-developed conventional automotive vehicle. At the
beginning of the project, the Requirements Engineer wishes to upload a
Safety Requirements Artefact to the System.

Actors: Requirements Engineer (primary)

User Goal in
Context:

The Requirements Engineer wishes to upload a requirements artefact to
the System and to associate traceability information with that artefact.

Preconditions: The requirements artefact exists and is saved on the Requirements
9ƴƎƛƴŜŜǊΩǎ ƭƻŎŀƭ ǿƻǊƪǎǇŀŎŜΦ ¢ƘŜ ht9b/h{{ tƭŀǘŦƻǊƳ ƛǎ ǊǳƴƴƛƴƎΣ ŀƴŘ ǘƘŜ
Requirements Engineer is logged into the system.

Assumptions: 1. Only certain classes of user are entitled to upload requirements
artefacts. The Requirements Engineer is such a user.

Main success
scenario:

1. wŜǉǳƛǊŜƳŜƴǘǎ 9ƴƎƛƴŜŜǊ ǎŜƭŜŎǘǎ ΨwŜǉǳƛǊŜƳŜƴǘǎ ±ƛŜǿΩ
2. System offers choice of options ς ΨǾƛŜǿ ǊŜǉǳƛǊŜƳŜƴǘǎΩΣ ΨǳǇŘŀǘŜ

requirementsΩ
3. wŜǉǳƛǊŜƳŜƴǘǎ 9ƴƎƛƴŜŜǊ ǎŜƭŜŎǘǎ ΨǳǇŘŀǘŜ ǊŜǉǳƛǊŜƳŜƴǘǎΩ
4. System offers choice of options ς ΨŀŘŘ ƴŜǿ ǊŜǉǳƛǊŜƳŜƴǘǎΩΣ ΨǳǇŘŀǘŜ
ŜȄƛǎǘƛƴƎ ǊŜǉǳƛǊŜƳŜƴǘǎΩ

5. wŜǉǳƛǊŜƳŜƴǘǎ 9ƴƎƛƴŜŜǊ ǎŜƭŜŎǘǎ ΨŀŘŘ ƴŜǿ ŘƻŎǳƳŜƴǘΩ
6. System presents index of local files
7. User selects relevant file for upload
8. System uploads requirement, adding configuration control

information (date, time, version)
9. System displays index view to confirm upload.
10. System prompts Requirements Engineer to edit traceability

information for the artefact.
11. The Requirements Engineer provides manual traceability links to

associated requirements artefacts and issues a change request for
changes to traceability links to associated claims in the certification
argument to be provided by the Argument Developer.

Post-conditions: The requirements artefact is stored on the System, available for all users
to view and for eligible users to edit. This file is under version control.

Alternative
Scenarios:

Exceptions: 6.1 Artefact not found. An error message is displayed. Return to step 5.
8.1 Upload fails. An error message is displayed. Return to step 4.

2 We have been deliberately vague aboǳǘ ǘƘŜ ǘŜǊƳ ΨwŜǉǳƛǊŜƳŜƴǘǎ !ǊǘŜŦŀŎǘΩ ƘŜǊŜΣ ŀǎ ǿŜ Řƻ ƴƻǘ ǿŀƴǘ ǘƻ
constrain the choice of technology within the Platform. What is envisaged is a requirements repository, in
which each requirement is individually identified, facilitating traceability at the level of the individual
requirement. This Use Case could then apply to the addition of a single requirement, or to a requirement
set. It is likely, however, that Use Case UC-09: Update Requirements Artefact would be deployed for
addition of a single requirement to an existing repository. For version control, it is likely that previous
versions of the requirements will be maintained in the repository, rather than extracted for separate
ǎǘƻǊŀƎŜΦ ¢Ƙƛǎ ƛǎ ǿƘȅ ŀ ΨǾƛŜǿ ǇǊŜǾƛƻǳǎ ǾŜǊǎƛƻƴǎΩ ƻǇǘƛƻƴ ƛǎ ƴƻǘ ƭƛǎǘŜŘ ƛƴ this Use Case.

High-Level Requirements D2.2

FP7 project # 289011 Page 108 of 134

UC-08: View Safety Requirements (extends UC-03: View Document)

Context: The OpenCom RTOS has been selected as the RTOS to be used for engine
control in a newly-developed conventional automotive vehicle. A User
wishes to use the OPENCOSS Platform to provide a view of the safety
requirements of the system.

Actors: User: could be a Requirements Engineer, Project Manager, ISA, Safety
Engineer, Safety Manager (any one of these is potential primary actor
here)

User Goal in
Context:

The User wishes to view the safety requirements.

Preconditions: The OPENCOSS Platform has been populated with requirements
artefacts relating to the engine controller. The OPENCOSS Platform is
running, and the User is logged into the system.

Assumptions:

Main success
scenario:

1. ¦ǎŜǊ ǎŜƭŜŎǘǎ ΨwŜǉǳƛǊŜƳŜƴǘǎ ±ƛŜǿΩ
2. System offers choice of options ς ΨǾƛŜǿ ǊŜǉǳƛǊŜƳŜƴǘǎΩΣ ΨǳǇŘŀǘŜ
ǊŜǉǳƛǊŜƳŜƴǘǎΩ

3. ¦ǎŜǊ ǎŜƭŜŎǘǎ ΨǾƛŜǿ ǊŜǉǳƛǊŜƳŜƴǘǎΩ
4. System displays contents of requirements repository, in a

searchable, filterable3 form.

Post-conditions: The contents of the requirements repository are displayed.

Alternative
Scenarios:

UC-08.1: View Previous Requirements Information4 (extends UC-08:
View Safety Requirements) Extension point: step 4
4.1 User selects a requirement or requirements
4.2 System offers a series of filters to the User
пΦо ¦ǎŜǊ ǎŜƭŜŎǘǎ ΨǾƛŜǿ ƘƛǎǘƻǊȅΩ ŦƛƭǘŜǊ
4.4 System displays past versions of the requirement or requirements
selected.

UC-08.2: View Requirements Added Since Previous Baseline (extends UC-
08: View Safety Requirements) Extension point: step 4
4.1 System offers a series of filters to the User
пΦн ¦ǎŜǊ ǎŜƭŜŎǘǎ ΨǾƛŜǿ ƴŜǿ ǊŜǉǳƛǊŜƳŜƴǘǎΩ ŦƛƭǘŜǊ
4.3 System searches for requirements added since the last baselined
version of the repository
4.4 System displays new requirements

UC-08.3: View Requirements deriving from a particular Stakeholder
(extends UC-08: View Safety Requirements) Extension point: step 4

3 Likely filters would include: traceability information, requirements at various levels of abstraction,
requirements generated by a particular Stakeholder, requirements associated with a particular component,
requirements changed or added ǎƛƴŎŜ ǇǊŜǾƛƻǳǎ ōŀǎŜƭƛƴŜΧ ǿŜ ƘŀǾŜ ŜȄǇŀƴŘŜŘ ŀ ŦŜǿ ƻŦ ǘƘŜǎŜ ǳǎŜ ŎŀǎŜǎ ƘŜǊŜΣ
but the list is not exhaustive.
4 Again, this extension Use Case can be applied at the level either of an individual requirement or a
complete repository.

High-Level Requirements D2.2

FP7 project # 289011 Page 109 of 134

4.1 System offers a series of filters to the User
пΦн ¦ǎŜǊ ǎŜƭŜŎǘǎ ΨǎŜŀǊŎƘ ǊŜǉǳƛǊŜƳŜƴǘǎ ōȅ {ǘŀƪŜƘƻƭŘŜǊΩ ŦƛƭǘŜǊ
4.3 System prompts for search term
4.4 User supplies name of Stakeholder
4.3 System searches for requirements owned by Stakeholder
4.4 System displays requirements

UC-08.4: Search Requirements (extends UC-08: View Safety
Requirements) Extension point: step 4
4.1 System offers a series of filters to the User
пΦн ¦ǎŜǊ ǎŜƭŜŎǘǎ ΨǎŜŀǊŎƘ ǊŜǉǳƛǊŜƳŜƴǘǎ Ω ŦƛƭǘŜǊ
4.3 System prompts for search term
4.4 User supplies search term
4.5 System prompts as to which attribute of the requirement should be
ǎŜŀǊŎƘŜŘ όƳŀƛƴ ǘŜȄǘΣ ƻǿƴŜǊ ΧύΦ
4.6 System searches for requirements containing the search term in
relevant field.
4.7 System displays requirements

Exceptions: 4.1 Requirements artefact not found. An error message is displayed.
Return to main view.

UC-09: Update Requirements Artefact (extends UC-04 Edit Document)

Context: The OpenCom RTOS has been selected as the RTOS to be used for engine
control in a newly-developed conventional automotive vehicle. The
Requirements Engineer wishes to update a requirements artefact stored

in the repository.5

Actors: Requirements Engineer (primary)

User Goal in
Context:

The Requirements Engineer wishes to edit requirements stored in the
repository (probably in response to a change request)

Preconditions: The OPENCOSS Platform has been populated with requirements
artefacts relating to the engine controller. The OPENCOSS Platform is
running, and the Requirements Engineer is logged into the system.

Assumptions: 1. Only certain classes of user are entitled to make changes to
requirements artefacts. The Requirements Engineer is such a user.
2. Requirements are stored in the repository in an editable form until
they are baselined.
3. Within the OPENCOSS framework, it may be necessary for Argument
Developers to request revisions/updates to the requirements. This
should be achieved via a formal change request process, rather than by
permitting the Argument Developer to update the requirements directly.

Main success
scenario:

1. wŜǉǳƛǊŜƳŜƴǘǎ 9ƴƎƛƴŜŜǊ ǎŜƭŜŎǘǎ ΨwŜǉǳƛǊŜƳŜƴǘǎ ±ƛŜǿΩ
2. System offers choice of options ς ΨǾƛŜǿ ǊŜǉǳƛǊŜƳŜƴǘǎΩΣ ΨǳǇŘŀǘŜ
ǊŜǉǳƛǊŜƳŜƴǘǎΩ

3. wŜǉǳƛǊŜƳŜƴǘǎ 9ƴƎƛƴŜŜǊ ǎŜƭŜŎǘǎ ΨǳǇŘŀǘŜ ǊŜǉǳƛǊŜƳŜƴǘǎΩ

5 This is likely to be applied at the level of individual statements or groups of statements, rather than a
complete update of the safety requirements repository. Again, though, that is an implementation decision.

High-Level Requirements D2.2

FP7 project # 289011 Page 110 of 134

4. System displays contents of requirements repository, in a writeable
form.

5. System locks saved version of the requirements, to prevent changes
by another user

6. Requirements Engineer makes changes to the relevant
requirements.

7. System offers a choice of save options ς ΨǎŀǾŜ ŎƘŀƴƎŜǎΩΣ ΨǎŀǾŜ
ōŀǎŜƭƛƴŜΩ

8. wŜǉǳƛǊŜƳŜƴǘǎ 9ƴƎƛƴŜŜǊ ǎŜƭŜŎǘǎ ΨǎŀǾŜ ŎƘŀƴƎŜǎΩ
9. System saves the changes to the requirements, but does not

baseline the requirements.
10. System unlocks saved version of the requirements.
11. System propagates changes in traceability information throughout

the requirements, specification and evidence artefacts.

Post-conditions: The requirements are updated, but the baseline remains the same. New
or changed requirements since the previous baseline remain writeable.
No changes have been made to version control information.

Alternative
Scenarios:

Use Case UC-09.1 Save Requirements Baseline (extends UC-09 Update
Requirements Artefact) Extension point: step 7
тΦм wŜǉǳƛǊŜƳŜƴǘǎ 9ƴƎƛƴŜŜǊ ǎŜƭŜŎǘǎ ΨǎŀǾŜ ōŀǎŜƭƛƴŜΩ
8.1 System saves the changes to the requirements.
8.2 System makes all requirements added or changed since the previous
ōŀǎŜƭƛƴŜ ΨǳƴǿǊƛǘŜŀōƭŜΩ
8.3 System saves requirements repository, adding configuration control
data (date, time, baseline)

Exceptions: 4.1 Requirements repository already open for editing by another user.
An error message is displayed. Return to main view.
4.2 Requirements not found. An error message is displayed. Return to
step 1.
9.1 Save fails. An error message is displayed. Return to step 7.

High-Level Requirements D2.2

FP7 project # 289011 Page 111 of 134

Requirements Engineer

Upload Safety

Requirements Artifact

View Safety

Requirements

View Previous

Requirements Information

«extends»

View Requirements

Added Since Baseline

«extends»

View Requirements

Derives from Particular

Stakeholder

«extends»

Search Requirements

«extends»Project Manager

ISA

Safety Manager

Safety Engineer

Update

Requirements Artifact

OPENCOSS Platform

Figure 20: Requirements Use Cases Diagram

UC-10: Develop Certification Argument

Context: The OpenCom RTOS has been selected as the RTOS to be used for engine
control in a newly-developed conventional automotive vehicle. At the

beginning of the project, the Argument Developer6 wishes to use the
OPENCOSS Platform to develop a safety argument for the engine
controller. The Platform contains an Argument Editor to facilitate this.

Actors: Argument Developer (primary)

User Goal in
Context:

The Argument Developer wishes to begin developing a safety argument
for the engine controller.

Preconditions: The OPENCOSS Platform has been populated with some Safety

6 The Argument Developer is likely to be a Safety Engineer with responsibility for developing the safety
argument. For a project of this size, one engineer is likely to have primary responsibility for this activity,
though in larger or distributed projects there may be several engineers involved.

High-Level Requirements D2.2

FP7 project # 289011 Page 112 of 134

Requirements, specifications and evidence artefacts relating to the

engine controller.7 The OPENCOSS Platform is running, and Argument
Developer is logged into the system.

Assumptions: 1. A safety argument provides a traceable linkage between safety
requirements and other requirements and design artefacts at different
levels of detail and evidence artefacts,
2. Only certain classes of user are entitled to establish and edit the safety
argument. The Argument Developer is such a user.
3. The system includes an argument editor tool to allow direct
development of a safety argument.
4. The argument references requirements, specifications and
development artefacts, but does not incorporate them
5. The system provides for manual traceability linkage between artefacts
of various kinds, and this linkage is at a meaningful level of granularity
(i.e. traceability between individual requirement statements at different
levels, to specifications of individual functions or behaviours of
components or subsystems, to the relevant section or subsection of an
evidence artefact.

Main success
scenario:

1. !ǊƎǳƳŜƴǘ 5ŜǾŜƭƻǇŜǊ ǎŜƭŜŎǘǎ Ψ!ǊƎǳƳŜƴǘΩ ǾƛŜǿ
2. System offers a choice of options ς ΨǾƛŜǿ ŀǊƎǳƳŜƴǘΩΣ ΨƴŜǿ
ŀǊƎǳƳŜƴǘΩΣ ΨŜŘƛǘ ŀǊƎǳƳŜƴǘΩ

3. !ǊƎǳƳŜƴǘ 5ŜǾŜƭƻǇŜǊ ǎŜƭŜŎǘǎ ΨƴŜǿ ŀǊƎǳƳŜƴǘΩ
4. System opens argument editor.
5. Argument Developer develops argument.
6. In the course of developing the argument, Argument Developer

creates traceability matrix for requirements, specifications,
standards, and evidence artefacts referred to in the argument and
stores it in his local workspace.

7. System offers options to save as draft or as baselined version (Use
Case UC-01).

8. ¦ǎŜǊ ǎŜƭŜŎǘǎ ΨǎŀǾŜ ŘǊŀŦǘΩ
9. System saves argument, adding configuration information (date,
ǘƛƳŜύ ŀƴŘ ƳŀǊƪƛƴƎ ŘƻŎǳƳŜƴǘ ŀǎ ΨŘǊŀŦǘΩΦ CƛƭŜ ǇŜǊƳƛǎǎƛƻƴǎ ŀǊŜ ǎŜǘ ǎƻ
that only the Argument Developer can edit this document.

10. User uploads traceability matrix (Use Case UC-01)

Post-conditions: A draft safety argument is saved on the Platform, for future refinement
by the Argument Developer.

Alternative
Scenarios:

Exceptions: 9.1 Save fails. An error message is displayed. Return to step 7.

UC-11: View Certification Argument

Context: The OpenCom RTOS has been selected as the RTOS to be used for engine
control in a newly-developed conventional automotive vehicle. A

7 Even though work on the development of the safety argument begins early in the development process, it
ƛǎ ǾŜǊȅ ǳƴƭƛƪŜƭȅ ǘƘŀǘ ŘŜǾŜƭƻǇƳŜƴǘ ƻŦ ǘƘŜ ŀǊƎǳƳŜƴǘ ǿƛƭƭ ōŜ ŜƴǘƛǊŜƭȅ ΨƎǊŜŜƴŦƛŜƭŘΩ ς i.e. occurring in the absence
of safety requirements or evidence artefacts.

High-Level Requirements D2.2

FP7 project # 289011 Page 113 of 134

certification argument for the engine controller is being developed in the
OPENCOSS Platform. One of several Stakeholders wishes to view the
certification argument.

Actors: User: could be Argument Developer, Safety Manager, Safety Engineer,
Project Manager, ISA (all primary)

User Goal in
Context:

The User wishes to examine the current certification argument.

Preconditions: The OPENCOSS Platform has been populated a (partial) certification
argument, which is under configuration control. The OPENCOSS Platform
is running, and the User is logged into the system.

Assumptions: 1. The argument editor tool is capable of opening a stored certification
argument in a read-only format.

Main success
scenario:

1. ¦ǎŜǊ ǎŜƭŜŎǘǎ Ψ!ǊƎǳƳŜƴǘΩ ǾƛŜǿ
2. System offers a choice of options ς ΨǾƛŜǿ ŀǊƎǳƳŜƴǘΩΣ ΨƴŜǿ
ŀǊƎǳƳŜƴǘΩΣ ΨŜŘƛǘ ŀǊƎǳƳŜƴǘΩ

3. ¦ǎŜǊ ǎŜƭŜŎǘǎ ΨǾƛŜǿ ŀǊƎǳƳŜƴǘΩ
4. System displays index of available files.
5. User selects relevant file
6. System displays relevant file in a read-only format.

Post-conditions: A read-only version of the certification argument is displayed.

Alternative
Scenarios:

Exceptions: 5.1 File not found. An error message is displayed. Return to step 2.

UC-12: View Evidence Artefact8 Associated with Certification Argument (extends UC-11:
View Certification Argument)

Context: The OpenCom RTOS has been selected as the RTOS to be used for engine
control in a newly-developed conventional automotive vehicle. A
certification argument for the engine controller is being developed in the
OPENCOSS Platform. One of several Stakeholders is currently viewing
the argument and wishes to examine an evidence artefact associated
with a particular claim made in the argument.

Actors: User: could be Argument Developer, Safety Manager, Safety Engineer,
Project Manager, ISA (all primary)

User Goal in
Context:

The User wishes to examine the evidence associated with a particular
claim in the current certification argument.

Preconditions: The OPENCOSS Platform has been populated a (partial) certification
argument, which is under configuration control. Some requirements,
evidence artefacts and specifications are also stored in the system,
though there is no expectation that all of the artefacts referred to in the
current version of the argument are actually present in the system yet.
The OPENCOSS Platform is running, and the User is logged into the
system.

Assumptions: 1. The argument editor tool is capable of opening a stored certification
argument in a read-only format.

8 Note that this use case is not restricted to evidence artefacts. In principle, a User might wish to call up
any requirement, specification or evidence artefact referred to in the argument.

High-Level Requirements D2.2

FP7 project # 289011 Page 114 of 134

Main success
scenario:

1. User selects a claim in the argument.
2. System offers a choice of options ς ΨǾƛŜǿ ŜǾƛŘŜƴŎŜΩΣ ΨǾƛŜǿ
ǊŜǉǳƛǊŜƳŜƴǘΩΣ ΨǾƛŜǿ ǎǇŜŎƛŦƛŎŀǘƛƻƴΩ

3. ¦ǎŜǊ ǎŜƭŜŎǘǎ ΨǾƛŜǿ ŜǾƛŘŜƴŎŜΩ
4. System queries traceability links to recover relevant evidence

artefact.

5. System displays relevant evidence artefact.9

Post-conditions: The evidence artefact directly relating to the argument claim is
displayed.

Alternative
Scenarios:

Exceptions: 4.1 The repository contains no evidence artefact tracing to the argument
claim. The System reports this absence. Return to display of the
argument as a whole.

UC-13: Edit Certification Argument (extends UC-04 Edit Document)

Context: The OpenCom RTOS has been selected as the RTOS to be used for engine control in a
newly-developed conventional automotive vehicle. A certification argument for the
engine controller is being developed in the OPENCOSS Platform. The Argument
Developer wishes to edit the certification argument.

Actors: Argument Developer (primary)

User Goal in
Context:

The Argument Developer wishes to edit the existing certification argument.

Preconditions: The OPENCOSS Platform has been populated a (partial) certification argument, which is
under configuration control. Some requirements, evidence artefacts and specifications
are also stored in the system, though there is no expectation that all of the artefacts
referred to in the current version of the argument are actually present in the system yet.
The OPENCOSS Platform is running, and the Argument Developer is logged into the
system.

Assumptions: 1. Only certain classes of user are entitled to make changes to argument artefacts. The
Argument Developer is such a user.
2. Arguments are stored in the argument editor tool in an editable form.
3. Within the OPENCOSS framework, it may be necessary for Argument Reviewers, ISAs,
Safety managers and other Stakeholders to request revisions/updates to the argument.
This should be achieved via a formal change request process, rather than by permitting
these Stakeholders to update the requirements directly.
4. The system includes an argument editor tool to allow direct development of a safety
argument.
5. The argument references requirements, specifications and development artefacts,
but does not incorporate them
6. The system provides for manual traceability linkage between artefacts of various
kinds, and this linkage is at a meaningful level of granularity (i.e. traceability between
individual requirement statements at different levels, to specifications of individual
functions or behaviours of components or subsystems, to the relevant section or
subsection of an evidence artefact.

Main success 1. !ǊƎǳƳŜƴǘ 5ŜǾŜƭƻǇŜǊ ǎŜƭŜŎǘǎ Ψ!ǊƎǳƳŜƴǘΩ ǾƛŜǿ

9 Ideally, the traceability should be of sufficient granularity to facilitate display of a precisely relevant
portion of the evidence.

High-Level Requirements D2.2

FP7 project # 289011 Page 115 of 134

scenario: 2. System offers a choice of options ς ΨǾƛŜǿ ŀǊƎǳƳŜƴǘΩΣ ΨƴŜǿ ŀǊƎǳƳŜƴǘΩΣ ΨŜŘƛǘ
ŀǊƎǳƳŜƴǘΩ

3. !ǊƎǳƳŜƴǘ 5ŜǾŜƭƻǇŜǊ ǎŜƭŜŎǘǎ ΨŜŘƛǘ ŀǊƎǳƳŜƴǘΩ
4. System opens argument and displays it in argument editor tool.
5. System locks saved version of the argument, to prevent changes by another user
6. Argument Developer makes changes to the relevant requirements.
7. Each time a change is made, System prompts Argument Developer to update

traceability matrix.
8. Argument Developer updates traceability matrix to reflect changes in the argument.
9. System prompts Argument Developer to save ς ΨǎŀǾŜ ŎƘŀƴƎŜǎΩΣ Ψ
10. !ǊƎǳƳŜƴǘ 5ŜǾŜƭƻǇŜǊ ǎŜƭŜŎǘǎ ΨǎŀǾŜ ŎƘŀƴƎŜǎΩ
11. System saves the changes to the argument.
12. System unlocks saved version of the argument.
13. System propagates changes in traceability information throughout the

requirements, specification and evidence artefacts.

Post-
conditions:

Changes to the argument are saved, and the argument is available for viewing and
editing by other users. Updates to traceability links have been propagated through the
relevant parts of the stored information.

Alternative
Scenarios:

UC13-01 Add Traceability Information (extends UC13: Edit Certification Argument):
1.1 Argument Developer receives a change request from a Requirements Engineer,
Safety Manager or Safety Engineer requesting a manual addition of traceability
information relating a requirements or evidence artefact to one or more claim(s) in the
argument.
8.1 Argument Developer updates traceability matrix to reflect new traceability
information.

Exceptions: 4.1 Existing argument is not found. System displays an error message. Return to step 2.
11.1 Changes are not saved. An error message is displayed. Return to step 9.

High-Level Requirements D2.2

FP7 project # 289011 Page 116 of 134

Argument Developer

Develop

Certification Argument

Safety Manager

Safety Engineer

Project Manager

ISA

View Certification

Argument

View Evidence Associated

with Certification

Argument

«extends»

Edit Certification

Argument

Add Traceability

Information

«extends»

OPENCOSS Platform

Figure 21:Argument Use Cases Diagram

UC-14: Upload Evidence (extends UC-01: Upload Document)

Context: The OpenCom RTOS has been selected as the RTOS to be used for engine
control in a newly-developed conventional automotive vehicle. The
OPENCOSS platform is being used to manage certification processes and
artefacts.

Actors: Safety Engineer (primary)

User Goal in
Context:

A Safety Engineer wishes to upload an evidence artefact to the Platform
and to associate traceability information with that artefact.

Preconditions: The OPENCOSS Platform is running, and the Safety Engineer is logged
into the system.

Assumptions: 1. Only certain classes of user are entitled to upload evidence artefacts.
The Safety Engineer is such a user.
 2. All evidence artefacts are maintained under configuration control.
оΦ ¢ƘŜ ŜǾƛŘŜƴŎŜ ŀǊǘŜŦŀŎǘ ŜȄƛǎǘǎ ŀƴŘ ƛǎ ǎǘƻǊŜŘ ƛƴ ǘƘŜ {ŀŦŜǘȅ 9ƴƎƛƴŜŜǊΩǎ ƭƻŎŀƭ
workspace

Main success
scenario:

1. {ŀŦŜǘȅ 9ƴƎƛƴŜŜǊ ǎŜƭŜŎǘǎ Ψ9ǾƛŘŜƴŎŜ ±ƛŜǿΩ
2. System offers choice of options ς ΨǾƛŜǿ ŜǾƛŘŜƴŎŜΣ ΨǳǇŘŀǘŜ ŜǾƛŘŜƴŎŜΩ
3. {ŀŦŜǘȅ 9ƴƎƛƴŜŜǊ ǎŜƭŜŎǘǎ ΨǳǇŘŀǘŜ ŜǾƛŘŜƴŎŜΩ
4. System offers choice of options ς ΨŀŘŘ ƴŜǿ ŜǾƛŘŜƴŎŜ ŀǊǘŜŦŀŎǘΩΣ
ΨǳǇŘŀǘŜ ŜȄƛǎǘƛƴƎ ŜǾƛŘŜƴŎŜ ŀǊǘŜŦŀŎǘΩ

5. {ŀŦŜǘȅ 9ƴƎƛƴŜŜǊ ǎŜƭŜŎǘǎ ΨŀŘŘ ƴŜǿ ŜǾƛŘŜƴŎŜ ŀǊǘŜŦŀŎǘΩ

High-Level Requirements D2.2

FP7 project # 289011 Page 117 of 134

6. System presents index of local files
7. User selects relevant file for upload
8. System uploads requirement, adding configuration control

information (date, time, version)
9. System displays index view to confirm upload.
10. System prompts Safety Engineer to edit traceability information for

the artefact.
11. The Safety Engineer provides manual traceability links to associated

evidence artefacts and issues a change request for changes to
traceability links to associated claims in the certification argument to
be provided by the Argument Developer.

Post-conditions: The evidence artefact is stored on the Platform under version control.
Traceability links to associated artefacts have been requested.

Alternative
Scenarios:

Exceptions: 7.1 Artefact not found. An error message is displayed. Return to step 4.
8.1 Upload fails. An error message is displayed. Return to step 4.

UC-15: View Evidence Artefact (extends UC-03: View Document)

Context: The OpenCom RTOS has been selected as the RTOS to be used for engine
control in a newly-developed conventional automotive vehicle. A User
wishes to use the OPENCOSS Platform to provide a view of the evidence

artefacts relating to the control system. 10

Actors: User: could be a Requirements Engineer, Project Manager, ISA, Safety
Engineer, Safety Manager (any one of these is potential primary actor
here)

User Goal in
Context:

The User wishes to view an evidence artefact.

Preconditions: The OPENCOSS Platform has been populated with evidence artefacts
relating to the engine controller. The OPENCOSS Platform is running,
and the User is logged into the system.

Assumptions: 1. The OPENCOSS Platform facilitates the view of evidence artefacts in
read-only format.

Main success
scenario:

1. ¦ǎŜǊ ǎŜƭŜŎǘǎ Ψ9ǾƛŘŜƴŎŜ ±ƛŜǿΩ
2. System offers choice of options ς ΨǾƛŜǿ ŜǾƛŘŜƴŎŜ ŀǊǘŜŦŀŎǘΩΣ ΨǳǇŘŀǘŜ
ŜǾƛŘŜƴŎŜ ŀǊǘŜŦŀŎǘΩ

3. ¦ǎŜǊ ǎŜƭŜŎǘǎ ΨǾƛŜǿ ŜǾƛŘŜƴŎŜ ŀǊǘŜŦŀŎǘΩ
4. System displays index of relevant artefacts
5. Use selects required evidence artefact
6. System displays evidence artefact

Post-conditions: The evidence artefact is displayed.

Alternative
Scenarios:

10 Note that this use case differs from UC-12. There may be occasions when a Safety Engineer or Safety
manager wishes to view the whole of a particular evidence artefact, rather than only the portion of it
directly traced to an argument claim, or even the totality of the evidence.

High-Level Requirements D2.2

FP7 project # 289011 Page 118 of 134

Exceptions: 5.1 Evidence artefact not found. An error message is displayed. Return to
main view.

UC-16: Update Evidence Artefact (extends UC-04 Edit Document)

Context: The OpenCom RTOS has been selected as the RTOS to be used for engine
control in a newly-developed conventional automotive vehicle. The
Safety Engineer wishes to update an evidence artefact stored in the
repository.

Actors: Safety Engineer (primary)

User Goal in
Context:

The Safety Engineer wishes to edit an evidence artefact stored in the
repository, and to update associated traceability information.

Preconditions: The OPENCOSS Platform has been populated with evidence artefacts
relating to the engine controller. The OPENCOSS Platform is running,
and the Safety Engineer is logged into the system.

Assumptions: 1. Only certain classes of user are entitled to make changes to
requirements artefacts. The Safety Engineer is such a user.
2. Evidence artefacts are stored in the repository in an editable form
until they are baselined. Where this is not the case, UC-16.1: Replace
Evidence Artefact is likely to be called.

Main success
scenario:

1. {ŀŦŜǘȅ 9ƴƎƛƴŜŜǊ ǎŜƭŜŎǘǎ Ψ9ǾƛŘŜƴŎŜ ±ƛŜǿΩ
2. System offers choice of options ς ΨǾƛŜǿ ŜǾƛŘŜƴŎŜΣ ΨǳǇŘŀǘŜ ŜǾƛŘŜƴŎŜΩ
3. {ŀŦŜǘȅ 9ƴƎƛƴŜŜǊ ǎŜƭŜŎǘǎ ΨǳǇŘŀǘŜ ŜǾƛŘŜƴŎŜΩ
4. System offers choice of options ς ΨŀŘŘ ƴŜǿ ŜǾƛŘŜƴŎŜ ŀǊǘŜŦŀŎǘΩΣ
ΨǳǇŘŀǘŜ ŜȄƛǎǘƛƴƎ ŜǾƛŘŜƴŎŜ ŀǊǘŜŦŀŎǘΩ

5. {ŀŦŜǘȅ 9ƴƎƛƴŜŜǊ ǎŜƭŜŎǘǎ ΨǳǇŘŀǘŜ ŜǾƛŘŜƴŎŜ ŀǊǘŜŦŀŎǘΩ
6. System presents index of local files
7. User selects relevant file
8. System displays relevant file.
9. System locks saved version of the evidence artefact, to prevent

changes by another user
10. Safety Engineer makes changes to the evidence artefact
11. System offers save option ς ΨǎŀǾŜ ŎƘŀƴƎŜǎΩ
12. {ŀŦŜǘȅ 9ƴƎƛƴŜŜǊ ǎŜƭŜŎǘǎ ΨǎŀǾŜ ŎƘŀƴƎŜǎΩ
13. System saves the changes to the evidence artefact.
14. System unlocks saved version of the evidence artefact.
15. System propagates changes in traceability information to the

argument.

Post-conditions: The evidence artefact is updated, and traceability information relating to
the changes is propagated through associated argument and evidence
artefacts.

Alternative
Scenarios:

Use Case UC-16.1 Replace Evidence Artefact (extends UC-16: Update
Evidence Artefact) extension point: step 4
4.1 System offers choice of options ς ΨŀŘŘ ƴŜǿ ŜǾƛŘŜƴŎŜ ŀǊǘŜŦŀŎǘΩΣ
ΨǳǇŘŀǘŜ ŜȄƛǎǘƛƴƎ ŜǾƛŘŜƴŎŜ ŀǊǘŜŦŀŎǘΩΣ ΨǊŜǇƭŀŎŜ ŜȄƛǎǘƛƴƎ ŜǾƛŘŜƴŎŜ ŀǊǘŜŦŀŎǘΩ
рΦм {ŀŦŜǘȅ 9ƴƎƛƴŜŜǊ ǎŜƭŜŎǘǎ ΨǊŜǇƭŀŎŜ ŜȄƛǎǘƛƴƎ ŜǾƛŘŜƴŎŜ ŀǊǘŜŦŀŎǘΩ
6.1 System presents index of existing files
6.2 Safety Engineer selects file for replacement
6.3 System archives existing file, with version information
6.4 Use Case UC-14: Upload Evidence.

High-Level Requirements D2.2

FP7 project # 289011 Page 119 of 134

Exceptions: 7.1 Evidence artefact already open for editing by another user. An error
message is displayed. Return to main view.
7.2 Requirements not found. An error message is displayed. Return to
step 1.
13.1 Save fails. An error message is displayed. Return to step 7.

Safety Engineer

Upload Evidence

View Evidence

Artefact

Project Manager

ISA

Requirements Engineer

Safety Manager

Update Evidence

Artefact

Replace Evidence

Artefact

«extends»

OPENCOSS Platform

Figure 22:Evidence Use Cases Diagram

UC-17: View traceability11

Context: The OpenCom RTOS has been selected as the RTOS to be used for engine
control in a newly-developed conventional automotive vehicle. The
OPENCOSS Platform has been propagated with evidence artefacts,
requirements artefacts, specifications and argument artefacts.
Traceability links have been establishes between these artefacts.

Actors: User: could be a Requirements Engineer, Project Manager, ISA, Safety
Engineer, Safety Manager (any one of these is potential primary actor

11 Traceability links have already been established manually in Use Cases UC-10 and UC-13.01, and changes
propagated automatically in Use Cases UC-16. There is therefore no need to include separate use cases for
the creation and propagation of traceability information here.

High-Level Requirements D2.2

FP7 project # 289011 Page 120 of 134

here)

User Goal in
Context:

The User wishes to view end-to-end traceability associated with a

particular requirement artefact.12

Preconditions: The OPENCOSS Platform is running, and the User is logged into the
system. The System is currently displaying the requirements artefact
with which the User is concerned.

Assumptions: 1. The OPENCOSS Platform includes traceability links which can be
navigated across different tools to provide an end-to-end view.

Main success
scenario:

1. {ȅǎǘŜƳ ǇǊŜǎŜƴǘǎ ŀ Ψ±ƛŜǿ ¢ǊŀŎŜŀōƛƭƛǘȅΩ ŦƛƭǘŜǊ
2. ¦ǎŜǊ ǎŜƭŜŎǘǎ Ψ¢ǊŀŎŜŀōƛƭƛǘȅΩ ŦƛƭǘŜǊ
3. System queries traceability links
4. System displays traceability links associated with requirements

artefact, including links to related requirements artefacts, argument
elements, specifications and evidence artefacts.

Post-conditions: An end-to-end view of traceability information is displayed.

Alternative
Scenarios:

3.1 System finds a break in the traceability chain.
3.2 System displays what traceability links exist, and highlights broken
linkages

Exceptions:

12 This use case could also be applied in a scenario in which the User wishes to view traceability information
associated with a particular argument claim or other argument element.

High-Level Requirements D2.2

FP7 project # 289011 Page 121 of 134

13 This Use Case is applicable to any changes made to argument elements, requirements artefacts,
specifications or evidence artefacts, since changes in any or all of these entail a need to review the
argument to ensure that it still holds.
14 This Use Case allows a user to query the system as to the effect a potential change will have on the
argument, without the change having actually been enacted. Actual changes are covered in the main
success scenario of UC-18.

UC-18: View Change Impact in Argument

Context: The OpenCom RTOS has been selected as the RTOS to be used for engine
control in a newly-developed conventional automotive vehicle. The
OPENCOSS Platform has been propagated with evidence artefacts,
requirements artefacts, specifications and argument artefacts.
Traceability links have been establishes between these artefacts. A

change has recently been made to an evidence artefact.13

Actors: User: Argument Developer, Safety Manager, Safety Engineer, ISA (any of
these could be primary actor here)

User Goal in
Context:

The User wishes to view the likely impact on the argument of changes
made to the evidence artefact

Preconditions: The OPENCOSS Platform has been propagated with evidence artefacts,
requirements artefacts, specifications and argument artefacts relating to
engine control. Traceability links exist between these artefacts. A
change to an evidence artefact has taken place and traceability
information updated throughout the System. The OPENCOSS Platform is
running, and the User is logged into the system.

Assumptions: 1. Traceability links exist between individual requirements claims and
evidence items associated with them.
2. The certification argument is presented in the argument editor in such
a way that relationships between claims are clear to the User.

Main success
scenario:

1. User seƭŜŎǘǎ Ψ!ǊƎǳƳŜƴǘΩ ǾƛŜǿΦ
2. System offers choice of options ς ΨΨǾƛŜǿ ŀǊƎǳƳŜƴǘΩΣ ΨƴŜǿ ŀǊƎǳƳŜƴǘΩΣ
ΨŜŘƛǘ ŀǊƎǳƳŜƴǘΩΣ ΨŀǎǎŜǎǎ ŎƘŀƴƎŜǎΩ
оΦ ¦ǎŜǊ ǎŜƭŜŎǘǎ ΨŀǎǎŜǎǎ ŎƘŀƴƎŜǎΩ
4. System interrogates traceability information for recent updates.
5. System associates updates with argument elements associated with
changed evidence artefact.
6. System displays argument, highlighting argument elements impacted
by the change
тΦ {ȅǎǘŜƳ ƛƴǘŜǊǊƻƎŀǘŜǎ ŀǊƎǳƳŜƴǘ ƭƛƴƪŀƎŜǎΣ ǘƻ ǳƴŎƻǾŜǊ ΨǎǳǎǇŜŎǘ ƭƛƴƪǎΩ ς
argument elements linked to those affected by the evidence change
уΦ {ȅǎǘŜƳ ŘƛǎǇƭŀȅǎ ΨǎǳǎǇŜŎǘ ƭƛƴƪǎΩ ǿƛǘƘƛƴ ǘƘŜ ŀǊƎǳƳŜƴǘ

Post-conditions: The argument is displayed in the argument editor, with affected
elements and suspect links highlighted.

Alternative
Scenarios:

Use Case UC-18.1: View Impact of Potential Change14 in Argument
4.1 System prompts user to highlight evidence artefact subject to
potential change
4.2 user highlights evidence artefact under consideration
4.3 System interrogates traceability information to recover details of
associated argument elements.
Then to step 5.

Exceptions:

High-Level Requirements D2.2

FP7 project # 289011 Page 122 of 134

UC-19: Generate Documentation15

Context: The OpenCom RTOS has been selected as the RTOS to be used for
engine control in a newly-developed conventional automotive vehicle.
The OPENCOSS Platform has been propagated with evidence artefacts,
requirements artefacts, specifications and argument artefacts.
Traceability links have been establishes between these artefacts.

Actors: User: Argument Developer, Safety Manager, Safety Engineer, ISA (any of
these could be primary actor here)

User Goal in Context: The User wishes to generate a document containing evidence stored in
the OPENCOSS Platform. Company Standards exist, which mandate the
structure of certification documentation.

Preconditions: The OPENCOSS Platform has been propagated with evidence artefacts,
requirements artefacts, specifications and argument artefacts relating to
engine control. Traceability links exist between these artefacts. The
OPENCOSS Platform also has information about target certification
domains, which include templates for certification documents. The
OPENCOSS Platform is running, and the User is logged into the system.

Assumptions: 1. A system is certified against a defined series of standards, company
standards etc.. The process requirements from these documents will be
ŎƻƴŦƭŀǘŜŘ ŀƴŘ ǊŜǇǊŜǎŜƴǘŜŘ ŀǎ ŀ ΨǘŀǊƎŜǘ ŎŜǊǘƛŦƛŎŀǘƛƻƴ ŘƻƳŀƛƴΩΦ
нΦ ¢ƘŜ ΨǘŀǊƎŜǘ ŎŜǊǘƛŦƛŎŀǘƛƻƴ ŘƻƳŀƛƴΩ ƛƴŎƭǳŘŜǎ ǘŜƳǇƭŀǘŜǎ ŦƻǊ ǊŜǉǳƛǊŜŘ
certification documents which can be instantiated by the System.

Main success
scenario:

1. ¦ǎŜǊ ǎŜƭŜŎǘǎ Ψ5ƻŎǳƳŜƴǘŀǘƛƻƴ DŜƴŜǊŀǘƻǊΩ ǾƛŜǿΦ
2. System prompts User to select relevant target certification domain.
3. User selects target certification domain.
4. System displays list of documents required for certification within

the target certification domain.
5. System prompts User to choose required document.
6. User selects required document.
7. System applies relevant template and populates document with

required information from the repository
8. System displays document in writable format
9. System presents options to User ς ΨŜŘƛǘ ŘƻŎǳƳŜƴǘΩΣ ΨǇǊƛƴǘ
ŘƻŎǳƳŜƴǘΩΣ ΨǎŀǾŜ ŘƻŎǳƳŜƴǘΩΣ ΨŜȄƛǘΩ

10. ¦ǎŜǊ ǎŜƭŜŎǘǎ ΨŜŘƛǘ ŘƻŎǳƳŜƴǘΩ
11. User edits document
12. System prompts User to save changes to document
13. User chooses to save changes
14. System saves document, adding details of date, time and version

number
15. System presents options to User ς ΨŜȄƛǘΩΣ ΨǇǊƛƴǘ ŘƻŎǳƳŜƴǘΩ
16. ¦ǎŜǊ ǎŜƭŜŎǘǎ ΨǇǊƛƴǘ ŘƻŎǳƳŜƴǘΩ
17. System prints document

Post-conditions: The document has been generated according to the appropriate
template, and has been saved under configuration control. The

15 This Use Case can be specialized to capture requirements to generate a number of different types of
document, each fitting a standardized template. Possible documents include Safety Case, Repository Dump,
¢Ŝǎǘ wŜǇƻǊǘΣ !ǊƎǳƳŜƴǘΣ wŜǇƻǎƛǘƻǊȅ IƛǎǘƻǊȅ Χ

High-Level Requirements D2.2

FP7 project # 289011 Page 123 of 134

document has been printed.

Alternative Scenarios: млΦмŀ ¦ǎŜǊ ǎŜƭŜŎǘǎ ΨǎŀǾŜ ŘƻŎǳƳŜƴǘΩ
Go to step 14
млΦмō ¦ǎŜǊ ǎŜƭŜŎǘǎ ΨǇǊƛƴǘ ŘƻŎǳƳŜƴǘΩ
10.2b System saves document, adding details of date, time and version
number
10.3b System prints document
млΦмŎ ¦ǎŜǊ ǎŜƭŜŎǘǎ ΨŜȄƛǘΩ
10.2c System saves document, adding details of date, time and version
number
10.3c System returns to main view

6.1 User elects to generate multiple documents (including complete
repository dump)

Exceptions: 6.1 Document template not found. An error message is displayed.

Requirements Engineer

Project Manager

ISA

Safety Engineer

Safety Manager

View Tracaeability

View Change Impact

in Argument

View Impact of

Potential Change in Argument

Generate

Documentation

«extends»

OPENCOSS Platform

Figure 23:Traceability, Change Management and Documentation Use Cases Diagram

11.3.4 Additional Use Cases arising from situations in which the OpenComRTOS is
reused in a similar system in the same domain

In this section, we detail use cases relating to a scenario in which the OpenCom RTOS is reused in a similar
system in the same domain. In practice, this could be a newly-developed product or an updated version or
mark within the same product line as that in which the RTOS was originally used. [For the sake of
argument, let us consider a case study ς derived from [2, page 29], in which the OpenCom RTOS has

High-Level Requirements D2.2

FP7 project # 289011 Page 124 of 134

proved valuable in the conventional automotive vehicle and is to be reused in a next-generation electric
ŎŀǊΦ ¢ƘŜ ŜƭŜŎǘǊƛŎ ŎŀǊ ƛǎ ǘƻ ōŜ Ŧǳƭƭȅ άŘǊƛǾŜ-by-ǿƛǊŜέ όƛΦŜΦ Ŧǳƭƭȅ ŎƻƴǘǊƻƭƭŜŘ ōȅ ǎƻŦǘǿŀǊŜ ŀƴŘ ŜƭŜŎǘǊƻƴƛŎ
ŎƻƳǇƻƴŜƴǘǎύ ŀƴŘ ǿƛƭƭ ƘŀǾŜ άŀ ŘƛǎǘǊƛōǳǘŜŘ ǇƻǿŜǊ ŀƴŘ ǿƘŜŜƭ ŎƻƴǘǊƻƭ ŀǊŎƘƛǘŜŎǘǳǊŜ whereby for each wheel
power and control is combined with active suspension control, stability, anti-ǎƭƛǇ ŎƻƴǘǊƻƭ ŀƴŘ Χ ōǊŀƪƛƴƎέ ώнΣ
page 29]. There are many potential hazards in this system: components may fail completely or
intermittently ς wires may break, sensors fail, memory problems arise, processors fail [2, page 29]. It is
not reasonable to assume that all of the resources on which the RTOS (and other subsystems) relies will be
available in all operational situations: the design must provide modes in which the system can remain
operational ς and safe ς even when degraded [2, page 29]. This might, for example, mean the use of
ƳǳƭǘƛǇƭŜ ǊŜŘǳƴŘŀƴǘ ǎǳōǎȅǎǘŜƳǎ ƻǊ ŀ ŎƻƳǇƭŜǘŜ ΨƘƻǘ-ǎǿƛǘŎƘΩ ǘƻ ŀ ǎŜŎƻƴŘŀǊȅΣ ŘǳǇƭƛŎŀǘŜ ǎȅǎǘŜƳΦ

This kind of component reuse has ǎŜǾŜǊŀƭ ƛƳǇƭƛŎŀǘƛƻƴǎ ŦƻǊ ht9b/h{{Ωǎ ŀƳōƛǘƛƻƴ ǘƻ ŦŀŎƛƭƛǘŀǘŜ ǘƘŜ ǊŜǳǎŜ ƻŦ
certification evidence and argument artefacts. As described above, the OpenCom RTOS has some
verification evidence available, since there is a formal verification the RTOS. The use cases outlined in the
previous section also imply the creation of further evidence artefacts, specific to the context of the original
conventional automotive system. The use cases provide for the upload of this evidence and its
incorporation in the safety argument.

Ideally, in addition to reusing the RTOS component in the electric car, we would like to reuse the
certification argument and evidence. In order to do so, there is a need to examine the argument and
evidence against the requirements of the certification standards relating to the new vehicle, which are
likely to essentially be the same certification standards as pertained with the original system, possibly with
the addition of extra requirements to accommodate novel technologies. In addition, the safety
requirements of the original system (against which the evidence has been developed) are likely to differ
from those of the new system, which entails an interrogation of the coverage provided by the existing
evidence and therefore the role it performs in the argument ς there may, for example, be limitations on
ǘƘŜ ŎƭŀƛƳǎ ǘƘŀǘ Ŏŀƴ ōŜ ǎǳǇǇƻǊǘŜŘ ōȅ ǘƘŜ ŜǾƛŘŜƴŎŜ ŀǾŀƛƭŀōƭŜΦ CǳǊǘƘŜǊƳƻǊŜΣ ǘƘŜ άŘǊƛǾŜ-by-ǿƛǊŜέ ŘŜǎƛƎƴ
entails interactions between different subsystems and components from those in the original design ς and
the degree of criticality of the interactions may have altered. The modularized certification argument
ƴŜŜŘǎ ǘƻ ǘŀƪŜ ŀŎŎƻǳƴǘ ƻŦ ǘƘŜǎŜ ŎƘŀƴƎŜǎ ƛƴ ǘƘŜ w¢h{Ωǎ ŎƻƴǘŜȄǘΣ ŀƴŘ ǘƻ ŎƻƴǎƛŘŜǊ ŀƭƭ ƻǇŜǊŀǘƛƻƴŀƭ
configurations ς full-up or degraded modes and, crucially, the periods of transfer between modes.

It is intended that the OPENCOSS Platform will be able to support this reconsideration of the safety
requirements, evidence and certification argument, though it should be stressed that it cannot circumvent
ǘƘŜ ΨōǊŀƛƴ ǿƻǊƪΩ ǊŜǉǳƛǊŜŘ ƻŦ ǘƘŜ ŜƴƎƛƴŜŜǊǎ ƛƴ ǊŜŎƻƴǎƛŘŜǊƛƴƎ ǘƘŜ ŀǊƎǳƳŜƴǘΦ !ƭƭ ƻŦ ǘƘŜ ǳǎŜ ŎŀǎŜǎ ŘŜŦƛƴŜŘ ƛƴ
the previous section, however, are likely to be deployed in this certification scenario: the automated
traceability management and change-impact use cases will help the safety manager in reviewing the areas
of the argument where further evidence may be required to support the certification claim. They will also
assist him in the assessment of the argument in terms of cross-cutting claims made. At this point, we
envisage the OpenCom RTOS certification argument being incorporated into a modular certification
argument for the wider electric car system. The modular certification work in OPENCOSS will specify how
interfaces between argument modules must be specified in terms of the dependencies between them, and
the Argument Views described above will present views of the dependencies between argument modules.

No new use cases are actually presented here, since it is envisaged that all of the recertification work
within a single domain is covered in the use cases described in the previous section.

High-Level Requirements D2.2

FP7 project # 289011 Page 125 of 134

11.3.5 Additional Use Cases arising from situations in which the OpenComRTOS is
reused in a system in another domain

In this section, we consider the most challenging of the reuse scenarios envisaged by the OPENCOSS
project: reuse of a component, with associated evidence and argumentation artefacts, across safety-
critical domains. Let us consider a situation where the OpenCom RTOS is selected for use as part of an
Integrated Modular Avionics (IMA) system which provides control functions to a large passenger aircraft
which operates in the European civil airspace.

In fact the design, safety and certification concerns that pertain in this reuse context are very similar to
those described in the previous section. There is, however, one crucial new aspect to consider. Reuse of a
component within a single domain will imply recertification to the same basic standards, as well as, in the
case of novel technologies ς such as the electric vehicle - to additional requirements extending the same
standards. Cross-domain reuse requires consideration of the differing requirements of very different
standards, with sometimes very different certification and process requirements, different standards of
evidence and proof, different responsibilities and roles for particular evidence items, different evidence
formats and so on. Although the basic use cases defined above provide an essential basis for this, there is
a need for translation between the language and requirements of the standards across domains to assist
safety managers in assessing the equivalence of the arguments made and the nature of further evidence
and support required. As before, the OPENCOSS Platform can support in the reconsideration of arguments
and evidence required to support this reuse, though it must be stressed that it cannot automate it
completely.

A new use case is presented in this section, to assist in review of the certification argument. At this point,
we envisage the OpenCom RTOS certification argument being incorporated into a modular certification
argument for the IMA system. The modular certification work in OPENCOSS will specify how interfaces
between argument modules must be specified in terms of the dependencies between them. The CCL will
provide a means for assessing the equivalence, or otherwise, of certification claims made across differing
standards and domains. The tools implementing these technologies within the OPENCOSS Platform will
ƛƴŘƛŎŀǘŜ ǿƘŜǊŜ ΨŘƛǊŜŎǘ ǘǊŀƴǎƭŀǘƛƻƴΩ ƻŦ ŎŜǊǘƛŦƛŎŀǘƛƻƴ ǊŜǉǳƛǊŜƳŜƴǘǎ ƛǎ ǇƻǎǎƛōƭŜΣ ŀƴŘ ǿƘŜǊŜ ǎƻƳŜ ǊŜŦŀŎǘƻǊƛƴƎ ƻŦ
the argument may be required. In addition, it will highlight areas of the argument ς typically, claims,
evidence assertions, interfaces between argument modules etc ς which may need to be redefined in the
new context. Use Case UC-20: View Areas of Concern in Argument is presented here at a very high-level ς
implementation decisions (or even decisions on the feasibility of implementation at all) will be made as the
theoretical work in the project progresses.

UC-20: View Areas of Concern in Argument

Context: The OpenCom RTOS has been selected as the RTOS to be used for power and
wheel control in an IMA system which provides control functions to a large
passenger aircraft which operates in the European civil airspace. The
OPENCOSS Platform has already been propagated with evidence artefacts,
requirements artefacts, specifications and argument artefacts relating to the
original context of use for the RTOS ς in the power and wheel control system
for a next-generation electric car. Traceability links have been established
between these artefacts. Safety and certification requirements artefacts
relating to the new system have been uploaded. The aim of this use case is to
regenerate the certification argument, highlighting areas which are likely to
need re-examination in the light of the new context.

Actors: User: Argument Developer, Safety Manager, Safety Engineer, ISA (any of these
could be primary actor here)

High-Level Requirements D2.2

FP7 project # 289011 Page 126 of 134

User Goal in Context: The User wishes to view the safety argument with areas of concern
highlighted, so that he can assess what work is needed to support the
certification claims more robustly, to assess the likely impact of changes in the
OpenCom argument module on the argument relating to other subsystems or
components and on cross-cutting concerns in the argument.

Preconditions: The OPENCOSS Platform has been propagated with evidence artefacts,
requirements artefacts, specifications and argument artefacts relating to
engine control in the original context of use. Traceability links exist between
these artefacts. Safety and certification requirements artefacts relating to the
new system have been uploaded. The OPENCOSS Platform is running, and the
User is logged into the system.

Assumptions: 1. Traceability links exist between individual requirements claims and evidence
items associated with them.
2. The certification argument is presented in the argument editor in such a way
that relationships between claims are clear to the User.
3. The OpenCom RTOS argument module has defined interfaces with other
argument modules, which provide details of the dependencies between them.
4. The CCL has been populated with information facilitating a querying of
equivalence between claims in standards in both the original and new context.

Main success scenario: 2. ¦ǎŜǊ ǎŜƭŜŎǘǎ Ψ!ǊƎǳƳŜƴǘΩ ǾƛŜǿΦ
3. {ȅǎǘŜƳ ƻŦŦŜǊǎ ŎƘƻƛŎŜ ƻŦ ƻǇǘƛƻƴǎΣ ƛƴŎƭǳŘƛƴƎ ΨǘǊŀƴǎƭŀǘŜ ŀǊƎǳƳŜƴǘΩ
4. ¦ǎŜǊ ǎŜƭŜŎǘǎ ΨǘǊŀƴǎƭŀǘŜ ŀǊƎǳƳŜƴǘΩ
5. System offerǎ ŎƘƻƛŎŜ ƻŦ ƻǇǘƛƻƴǎ ŦƻǊ ΨƻǊƛƎƛƴŀƭ ŎŜǊǘƛŦƛŎŀǘƛƻƴ ŘƻƳŀƛƴΩ ŀƴŘ
ΨǘŀǊƎŜǘ ŎŜǊǘƛŦƛŎŀǘƛƻƴΩ ŘƻƳŀƛƴ ς hǇǘƛƻƴǎ ŀǊŜ ΨwŀƛƭΩΣ Ψ!ǳǘƻƳƻǘƛǾŜΩΣ Ψ!ǾƛƻƴƛŎǎΩ

6. ¦ǎŜǊ ǎŜƭŜŎǘǎ Ψ!ǳǘƻƳƻǘƛǾŜΩ ŀǎ ƻǊƛƎƛƴŀƭ ŘƻƳŀƛƴ ŀƴŘ Ψ!ǾƛƻƴƛŎǎΩ ŀǎ ǘŀǊƎŜǘ
domain.

7. System offers list of standards for original domain and target domain, and

prompts user to select the relevant ones.16
8. User selects relevant standards.
9. System assesses which safety requirements and evidence assertions are

directly translatable, and interrogates traceability links to establish where
ǘƘŜ ŀǊƎǳƳŜƴǘ Ƴŀȅ ōŜ ΨōǊƻƪŜƴΩΦ

10. {ȅǎǘŜƳ ŀǎǎŜǎǎŜǎ ƛƳǇŀŎǘǎ ƻŦ ΨŘŀƳŀƎŜΩ ǘƻ ǘƘŜ ŀǊƎǳƳŜƴǘ ƻƴ ŘŜŦƛƴŜŘ
argument interfaces, within the OpenCom argument module.

11. {ȅǎǘŜƳ ŘƛǎǇƭŀȅǎ ǾƛŜǿ ƻŦ ŀǊƎǳƳŜƴǘ ŦƻǊ ΨǘŀǊƎŜǘΩ ŘƻƳŀƛƴΣ ƘƛƎƘƭƛƎƘǘƛƴƎ
untranslatable requirements and evidence assertions, suspect links and
suspect module interface elements.

Post-conditions: The target domain argument is displayed in the argument editor, with
untranslatable requirements and evidence assertions, broken links and suspect
module highlighted.

16 It is conceivŀōƭŜ ǘƘŀǘ ǿŜ Ƴŀȅ ƘŀǾŜ ǘƻ ŎƻƴǎƛŘŜǊ ΨǘǊŀƴǎƭŀǘƛƻƴΩ ōŜǘǿŜŜƴ ŀ ǎǳƛǘŜ ƻŦ ǎǘŀƴŘŀǊŘǎ ƛƴ ŜŀŎƘ ŘƻƳŀƛƴ
ς We have chosen to focus on individual standards here, for clarity, but this should be considered in the
requirements for the CCL/CCL-editor.

High-Level Requirements D2.2

FP7 project # 289011 Page 127 of 134

11.3.6 Requirements Issues Arising from the Use Cases Above

There are some issues which will need to be addressed in the requirements for the OPENCOSS Platform
which have been touched on, but not adequately captured, in the use case descriptions and footnotes
above. It is worth noting them here.

Obviously, there is requirement need for end-to-end traceability between artefacts stored in the
OPENCOSS Platform. This needs to be at a sufficient level of granularity to allow traceability between an
individual safety requirement statement and other individual requirements, between individual
requirements and specifications of subfunction or component behaviour at a level of detail sufficient to
capture individual functions, between individual requirements and individual argument elements (claims,
assumptions, contextual elements and evidence references), and between individual argument elements
and evidence artefacts at a sufficient level of detail to cover the detail of the claim made in the evidence
assertion. The high-level use cases stated earlier do not capture this requirement fully, so it has been
stated fully here.

The certification arguments stored in the OPENCOSS Platform will need to address a variety of system
ŎƻƴŦƛƎǳǊŀǘƛƻƴǎΣ ǘƻ ŎƻǾŜǊ ΨƴƻǊƳŀƭκƛŘŜŀƭΩ and degraded operational modes. In particular, there is a need to
consider the implications of dynamic reconfiguration of the system in operation ς i.e. how the safety of the
system in transition between operational modes (particularly transition to a degraded mode) can be
assured. This is an open research question, with far-reaching implications. It should be given due
consideration in the modular certification work.

CƻǊ ŎƭŀǊƛǘȅΣ ǘƘŜ ŘƛǎŎǳǎǎƛƻƴ ǊŜƭŀǘƛƴƎ ǘƻ ǘƘŜ ΨǘǊŀƴǎƭŀǘƛƻƴΩ ƻŦ ǘƘŜ ŀǊƎǳƳŜƴǘ ǿƛǘƘƛƴ ŀƴŘ ŀcross domains in the
preceding two sections focusses on single standards. We need to be aware that it is conceivable ς indeed,
more likely ς ǘƘŀǘ ǿŜ ǿƛƭƭ ƴŜŜŘ ǘƻ ŎƻƴǎƛŘŜǊ ΨǘǊŀƴǎƭŀǘƛƻƴΩ ōŜǘǿŜŜƴ ŀ ǎǳƛǘŜ ƻŦ ŘƻŎǳƳŜƴǘǎ ƛƴ ŜŀŎƘ ŘƻƳŀƛƴΦ
The CCL may need to consider specialisƛƴƎ ŀ ΨŎŜǊǘƛŦƛŎŀǘƛƻƴ ŎƻƴǘŜȄǘΩ ŦƻǊ ŜŀŎƘ ŘƻƳŀƛƴΣ ƛƴ ŀŘŘƛǘƛƻƴ ǘƻ
standard-level translation.

High-Level Requirements D2.2

FP7 project # 289011 Page 128 of 134

12 Appendix: Validation scenario (High-level scenario)

12.1 Introduction

This appendix describes the high-level scenario that is used to validate the use cases and the high-level
requirements.

Automotive, Railway, and Avionics are combined in the scenarios below. Note that the high-level
requirements are here represented by the use case diagram ovals. The number in the use case titles refers
actually to the high-level requirements as defined in D2.2.

12.2 Users

In Figure 24 there is an overview depicted of the (application-domain independent) users involved in the
future OPENCOSS platform, when dealing with an assessment.

Assessor
Company (A3)

Manufacturer
Company (M1)

Safety
Engineer (E1)

European
Commission

(E3)

Safety
Assessor (S1)

National
Safety

Authority (N3)

National
Government

(G1)

Standards
Organisation

(S2)

Tool Provider
Company (T1)

User (U1) Interfacing
Tool (T2)

Development-
Tool (T3)

Test Tool (T4)

Assessment
Tool (T7)

Administrator
(A2)

Consumer
(C1)

Safety
(Project)

Manager (P1)

Argument
Developer

(A1)

European
Safety

Authority (E4)

Manufacturer
of Safety
Critical

Components
(M2)

Manufacturer
of Safety
Critical

System (M3)

Safety Case
Engineer (E2)

Management
Tool (T5)

Argumentation
Tool (T6)

Developer /
Tester (D1)

Users Stakeholders

(excluding users)

Figure 24: Overview of the user's hierarchy

12.3 Context: system assessment in 2021

In order to give a more lively background to the scenarios at hand and to aim for a better elicitation of
missing requirements, there is a separate system for each application domain. Summarizing, the
automotive domain has the e-carPark, the railway domain uses the e-shunt system, and the avionics the e-
taxi. This provides the context of the scenario.

Note that the main goal of these scenarios is NOT to describe the precise actual situation in each of the
application domains, but to check whether the requirements are complete. It may be the case that the

High-Level Requirements D2.2

FP7 project # 289011 Page 129 of 134

example system does not reflect reality. This is not harmful. It should approach the measure of complexity
of real systems in order to capture the maturity of the high-level requirements.

The high-level scenario is set in the future, around 2021. A system will be built and needs to be assessed.
The company that is building it, is IntelliTransport, a global company with a number of daughter companies
in the specific transport domains: IntelliCar, IntelliTrain, IntelliPlane.

IntelliTransport, including all its daughter companies, is a mature CMMI level 5 organization. It has
developed the systems using a powerful and open source fully integrated system-development tool chain,
called OISLC (Open Integrated System Life Cycle). The tool chain includes all tools supporting requirements,
design and testing at system level, hardware level and software level.

The OISLC has also tool supporting project management, configuration management, quality assurance
and a nice process assistant that drives the team into a concert of activities along the life cycle,
orchestrated by a manager, ensuring proper process execution in the right order and with no omissions.
Moreover, IntelliTransport made use of a reference standard architecture and a large number of building
blocks both hardware and software.

12.3.1 Automotive: e-carPark

LƴǘŜƭƭƛ/ŀǊ Ƙŀǎ ǇǊƻŘǳŎŜŘ ŀ ƴŜǿ ŀǳǘƻƳƻǘƛǾŜ ŦŜŀǘǳǊŜ ŎŀƭƭŜŘ άŜ-cartŀǊƪέ όƴƻǘ ǘƻ ōŜ ŎƻƴŦǳǎŜŘ ǿƛǘƘ ǘƘŜ Ŝ-
carPark system developed during the OPENCOSS project). Essentially you drive your car to a desired
destination, get out from the car and, through a mobile phone button, the car proceed autonomously to
find safely the closest authorized parking area. If necessary the car will also autonomously refuel. At any
ǘƛƳŜ ƭŀǘŜǊΣ ŀǘ ȅƻǳǊ ŎƻƴǾŜƴƛŜƴŎŜΣ ȅƻǳ άǊŜŎŀƭƭέ ǘƘŜ ŎŀǊΣ ǘƘŀǘ ǿƛƭƭ ƳŜŜǘ ȅƻǳ ŀǘ ŀ ƎƛǾŜƴ Ǉƻǎƛǘƛƻƴ ŀǘ ŀ ƎƛǾŜƴ ǘƛƳŜ
(human-to-car rendez-vous).

The company IntelliCar has developed the hardware and software system to implement the e-carPark
concept. This system may introduce huge hazards to humans as it also imposes a big economic risk in a
άǊŜŎŀƭƭέ ƛƴ ŎŀǎŜ ƻŦ ǘŜŎƘƴƛŎŀƭ ǇǊƻōƭŜƳǎΦ

The company needs to demonstrate that e-carPark is ISO 26262 compliant and this standard has been fully
and adequately applied by IntelliCar in the system.

Note that the industrial case of D2.1, described in annex D2.1a, can form a suitable context as well.

12.3.2 Railway: e-shunt

IntelliTrain has proŘǳŎŜŘ ŀ ƴŜǿ Ǌŀƛƭǿŀȅ ŦŜŀǘǳǊŜ ŎŀƭƭŜŘ άŜ-ǎƘǳƴǘέΦ 9ǎǎŜƴǘƛŀƭƭȅ ǘƘŜ ƭƻŎƻƳƻǘƛǾŜ ŘǊƛǾŜǊ ǿƛƭƭ
indicate the desired destination for the train, including the destination of each rolling stock item connected
to the locomotive. The driver gets out and the train proceeds autonomously to find safely the destinations
of all rolling stock item connected to it in the yard, including its own destination. The system can also be
used to call upon locomotives and collect rolling stock items from a yard.

The company IntelliTrain has developed the hardware and software system to implement the e-shunt
concept. This system may introduce huge hazards to humans as it also imposes a big economic risk in case
of technical problems.

The company needs to demonstrate that e-shunt is CENELEC compliant and that this standard ha .

Note that the industrial case of D2.1, described in annex D2.1b, can form a suitable context as well.

High-Level Requirements D2.2

FP7 project # 289011 Page 130 of 134

12.3.3 Avionics: e-taxi

LƴǘŜƭƭƛtƭŀƴŜ Ƙŀǎ ǇǊƻŘǳŎŜŘ ŀ ƴŜǿ ŀǾƛƻƴƛŎ ŦŜŀǘǳǊŜ ŎŀƭƭŜŘ άŜ-ǘŀȄƛέΦ !ŦǘŜǊ ŀ ƴǳƳōŜǊ ƻŦ ǊŜŎŜƴǘ ŀccidents where
pilots have caused a number of collisions during taxiing, fatigued after long flights and an intense landing
procedure, IntelliPlane Essentially the pilot will indicate the desired destination gate for the plane and the
plane will automatically taxi the plane to this gate. Research has indicated that a lot of accidents

The company IntelliTrain has developed the hardware and software system to implement the e-taxi
concept. This system may introduce huge hazards to humans as it also imposes a big economic risk in case
of technical problems.

The company needs to demonstrate that e-shunt is DO-X compliant.

Note that the industrial case of D2.1, described in annex D2.1c, can form a suitable context as well.

12.4 Setting up the assessment

From now on, we call the system at hand, the e-system. For automotive this is the e-carPark system, for
railway, it will be e-shunt system, and avionics, the e-taxi.

When the system is starting to be developed ς especially when no similar system has been developed by
this company yet ς a number of things need to be made clear. This does not have to include a full tailoring
of the standards requirements to the products safety requirements. Given the context, the nature of the
system, its goals etc. a first step in what requirements should be applied or the claims that need to be
addressed can be identified by the standard. A s can help in setting up the basics. See Figure 25.

Administrator
(A2)

Manage Platform
Configuration (3)

Manage View
Types (156)

«include»

Safety Case
Engineer (E2)

Manage
Understandings (7)

Support Tailoring
using

Understandings (28)

Figure 25: Setting up the standarŘǎΩ ǎŀŦŜǘȅ ǊŜǉǳƛǊŜƳŜƴǘǎ

Basic document management use cases are as presented in Figure 27 These should be self-explanatory.
Note, though, that they are very general ς the requirements and glossary spell out potential variations
between different artefact groups (See also the taxonomy of D6.1) ς the umbrella term artefacts here
encompasses development artefacts like requirements and design and evidence artefacts like workflows,
requirements, arguments, evidence characteristics (whichever part of the evidence artefact is directly
editable by the user, in the OPENCOSS platform).

High-Level Requirements D2.2

FP7 project # 289011 Page 131 of 134

Safety
Engineer (E1)

Manage
Artefacts (204)

Add Artefact

Remove
Artefact

Edit Artefact

Import Artefact
from Other Dossier

(22)

Support Tailoring
using

Understandings (28)

Edit Safety
Requirements

View Artefact

«include»

«include»

«include»

«include»

«extend»

OPENCOSS

Platform

Figure 26:Document Management Use Case titles (Manufacturer)

Figure 27: Safety Engineer use case diagram

Figure 28 ǎƘƻǿǎ ǘƘŜ ¦ǎŜ /ŀǎŜǎ ƛŘŜƴǘƛŦƛŜŘ ŦƻǊ ƳŀƴǳŦŀŎǘǳǊŜǊΩǎ ŘŜǾŜƭƻǇƳŜƴǘ ƻŦ ŀƴ ƛƴƛǘƛŀƭ ǎŀŦŜǘȅ ŀǊƎǳƳŜƴǘ ŦƻǊ
ŀ ƎƛǾŜƴ ǎȅǎǘŜƳκŎƻƳǇƻƴŜƴǘΦ bƻǘŜ ǘƘŀǘ ǘƘŜ ǘŜǊƳ ΨŀǊƎǳƳŜƴǘΩ ƛǎ ǳǎŜŘ ǾŜǊȅ ƭƻƻǎŜƭȅ ƘŜǊŜΦ ¢ƘŜ ǊŜǉǳƛǊŜƳŜƴǘǎ
will need to tŀƪŜ ŀŎŎƻǳƴǘ ƻŦ ǘƘŜ ŘƻƳŀƛƴ ƳƻŘŜƭΩǎ ŘƛǎǘƛƴŎǘƛƻƴǎ ōŜǘǿŜŜƴ ǇǊƻŘǳŎǘ όǎŀŦŜǘȅύΣ ŎƻƳǇƭƛŀƴŎŜ ŀƴŘ
confidence arguments. I am envisaging a storage of evidence characteristics alongside the individual
ŜǾƛŘŜƴŎŜ ŀǊǘŜŦŀŎǘ όƛƴ ǘƘŜ ŎƻƴǘŜȄǘ ƻŦ ŀ ƎƛǾŜƴ ŀǊƎǳƳŜƴǘύΦ ΨvǳŜǊȅ !ǊƎǳƳŜƴǘΩ ƛǎ ǘƘŜ ƛƴǘŜǊŜǎǘƛƴƎ ¦ǎŜ /ŀǎŜ ƘŜǊŜΣ
as it should cover a multitude of possibilities for the manager to look at the repository or dossier.

High-Level Requirements D2.2

FP7 project # 289011 Page 132 of 134

Argument
Developer

(A1)

Manage Safety /
Assurance Case

(203)

Develop Safety
Case (187)

Develop Assurance
Case (224)

Develop Claim
(36)

Support Assurance
Arguments Development

using Template (188)

Support Formulation
of Claims using

Understandings (10)

Apply Template for
New Version (33)

Apply Template for
Cross-Standard
Compliance (34)

View All Inventory
of Evidence (225)

Query
Argument (27)

Show Evidence
Coverage/

Suitability (190)

Develop
Argument (171)

Manage
Evidence (37)

Show Evidence
Requirements for

Claim (30)

Support Finding
Suitable Evidence

(39)

Link Evidence
(31)

Manage Evidence
Characterization

(191)

Compose
Compliance

Demonstration (211)

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»
«include»

«include»

«include»

«include»

«include»

«include»
«include»

OPENCOSS

Platform

Figure 28: Developing an Initial Safety Argument

12.5 System re-use with the same standard

The e-system is now upgraded and most of the system is kept the same. The safety manager has
understood that the only change is an upgrade of one of the components and sets up a new assurance
case for this component.

The Argument Developer/Safety Engineer/Safety manager is putting the argumentation and evidence
together (See Figure 28 and Figure 27) by choosing either:

1. the original safety dossier/safety case/repository and update that with the new information, c.q.
the new assurance case, or

2. choose for an argumentation pattern that include an original successfully assessed safety dossier
and addition of a new component/assurance case.

The Safety Engineer is gathering the information from the developers and testers within the manufacturer
company and puts them in the repository. See Figure 27.

5ǳǊƛƴƎ ǘƘŜ ǇǊƻŎŜǎǎ ǘƘŜ ƴŜǿ ǊŜǇƻǎƛǘƻǊȅ ƛǎ ŘƛǎŎǳǎǎŜŘ ōŜǘǿŜŜƴ ǘƘŜ ŎƻƳǇŀƴȅΩǎ ǎŀŦŜǘȅ ƳŀƴŀƎŜǊ ŀƴŘ ǘƘŜ
(independent) assessor. See Figure 29.

High-Level Requirements D2.2

FP7 project # 289011 Page 133 of 134

Safety
(Project)

Manager (P1)

Safety
Assessor (S1)

Compose
Compliance

Demonstration (211)

Navigate
Repository (121)

Formulate Agreement
on Compliance Means

(212)

Manage
Repository (197)

Audit Compliance
Items (213)

Do assessment
(prepare for

certification) (210)

Compose
Assessment Report

(48)

Audit Safety /
Assurance Case

(217)

«include»

«include»

«include»

«include»

«include»

«include»

OPENCOSS

Platform

Figure 29: Assessment and negotiation use cases

12.6 Component re-use with the same standard

Another e-system is now created and one of the components is copied from another system. The
compliance of this component was demonstrated with a compositional assurance case and did successfully
complete its assurance assessment. The safety manager sets up a new safety case and re-uses the
assurance case for the particular component.

Figure 28 should offer all use cases (particularly number 33) for supporting this situation.

12.7 Re-use with a different standard, within the application domain

Now the e-system is applied for another group of target vehicles. For automotive, the e-carPark will be
applied for trucks, the e-shunt in railway is extended with interlocking, and e-taxi is applied for freight
planes.

High-Level Requirements D2.2

FP7 project # 289011 Page 134 of 134

This process follows similar steps as Section 12.6. And Figure 28 should support this with particularly use
case 34.

12.8 Re-use cross application domain

The core part of the system is replaced by a real time operating system from another domain. This process
follows similar steps as Section 12.6 and Figure 28 should again support this with particularly use case 34.

